当前位置:首页 > 教案教学设计 > 数学教案

绝对值教学目标

日期:2022-02-18

这是绝对值教学目标,是优秀的数学教案文章,供老师家长们参考学习。

绝对值教学目标

绝对值教学目标第 1 篇

一、教学目标

【知识与技能】

借助于数轴理解相反数和绝对值的概念,会求一个数的绝对值,能借助绝对值比较两个负数的大小。

【过程与方法】

通过自主探索、小组讨论、合作交流探索得到绝对值的过程,培养学生发现和解决问题的能力,锻炼学生合作交流的意识。

【情感态度与价值观】

体会到数学和生活之间的联系,提升学生学习数学的自信心和乐趣。

二、教学重难点

【教学重点】

相反数、绝对值的概念。

【教学难点】

求一个数的绝对值和相反数;借助绝对值比较负数间的大小。

三、教学过程

(一)引入新课

教师回顾旧知并提问:上节课学习了哪些知识?

预设:学习了数轴,知道了有理数都可以用数轴上的点来表示。

多媒体出示,3与-3,5和-5等数字,再次提出问题:这些数有什么相同点,你能找到这些数在数轴上的位置吗?引出新课。

(二)探索新知

学生自主观察,并写出几组类似的数字。

绝对值教学目标第 2 篇

  第二章 有理数及其运算

  3.绝对值

  一、学生起点分析

  学生的知识技能基础:学生已经学习了有理数,认识了数轴,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。并初步体会到了数形结合的思想方法 。

  学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

  二、学习任务分析

  1.地位和内容

  相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

  本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

  2.教学重点和难点

  教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  教学难点:利用绝对值比较两个负数的大小。

  3. 教学目标

  (1)借助数轴,理解绝对值和相反数的概念

  (2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

  (3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

  (4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  三、教学过程设计

  本节课设计了五个教学环节:第一环节:创设情境,导入新课;第二环节:合作交流,探索新知;第三环节:应用迁移,巩固提高;第四环节:总结反思,知识内化;第五环节:当堂检测,及时反馈;第六环节:拓展延伸,能力提升。

  第一环节 创设情境,导入新课

  活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?

  活动目的:提供几组数让学生进行比较,从而得出相反数的概念。并让学生理解消化相反数的概念。

  活动内容2:点将游戏一。A同学任意说出一个有理数,再随意地点另一个同学B回答它的相反数。B同学回答后,也任意说出一个有理数,再点另一个同学C回答它的相反数……以此类推,约有一半的学生参与后,游戏结束。

  活动目的:利用游戏的形式巩固相反数的概念。

  活动内容3:将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?

  活动目的:从形的角度进一步理解相反数。

  实际效果:通过数、游戏、形多个方面让学生认识相反数,学生很快理解相反数,全体学生都能顺利的说出一个数的相反数。

  第二环节 合作交流,探索新知

  活动内容:让学生观察图画,并回答问题,“两只狗分别距原点多远?”

  1. 引入绝对值概念

绝对值教学目标第 3 篇

  导学目标

  1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

  2、通过应用绝对值解决实际问题绝对值的意义和作用。

  导学重点:

  正确理解绝对值的概念?

  导学难点:

  负数大小比较??

  导学过程

  温故:

  1、下列各数中:

  +7,—2,,—8?3,0,+0?01,—,1,哪些是正数?哪些是负数?哪些是非负数?

  2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

  —3,4,0,3,—1?5,—4,,2?

  链接:

  问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

  知新:

  1、什么叫绝对值?

  在数轴上,一个数所对应的点与的叫做这个数的绝对值.例如+5的绝对值等于5,记作+5=5;—3的绝对值等于3,记作。

  2、绝对值的特点有哪些?

  (1)一个正数的绝对值是;例如,4=,+7.1=。

  (2)一个负数的绝对值是;例如,-2=,-5.2=。

  (3)0的绝对值是.

  容易看出,两个互为相反数的数的绝对值.如—5=+5=5.

  练一练:

  1、已知||=5,求的值。

  2、填空:

  (1)+3的符号是_____,绝对值是______;

  (2)—3的符号是_____,绝对值是______;

  (3)—的符号是____,绝对值是______;

  (4)10—5的符号是_____,绝对值是______?

  3、填空:

  (1)符号是+号,绝对值是7的数是________;

  (2)符号是—号,绝对值是7的数是________;

  (3)符号是—号,绝对值是0?35的数是________;

  (4)符号是+号,绝对值是1的数是________;

  4、

  (1)绝对值是的数有几个?各是什么?

  (2)绝对值是0的数有几个?各是什么?

  (3)有没有绝对值是—2的数?

  3、理解:

  若用a表示一个数,当a是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:

  (1)如果a>0,那么a=a;

  (2)如果a<0,那么a=-a;

  (3)如果a=0,那么a=0。

  4、比较两个负数的大小

  由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小

绝对值教学目标第 4 篇

  教学目标

  1.知识与技能。

  ①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值。

  ②通过应用绝对值解决实际问题,体会绝对值的意义和作用。

  2.过程与方法

  经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。

  3.情感、态度与价值观

  ①通过解释绝对值的几何意义,渗透数形结合的思想。

  ②体验运用直观知识解决数学问题的成功.

  教学重点难点

  重点:给出一个数,会求它的绝对值。

  难点:绝对值的几何意义、代数定义的导出。

  教与学互动设计

  (一)创设情境,导入新课

  活动:请两同学到讲台前,分别向左、向右行3米。

  交流:

  ①他们所走的路线相同吗?

  ②若向右为正,分别可怎样表示他们的位置?

  ③他们所走的路程的远近是多少?

  (二)合作交流,解读探究

  观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的.__________不同,__________相同.

  总结:例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值。

  绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│。

  想一想-3的绝对值是什么?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号