当前位置:首页 > 教案教学设计 > 数学教案

二次函数与等腰三角形教案

日期:2022-02-07

这是二次函数与等腰三角形教案,是优秀的数学教案文章,供老师家长们参考学习。

二次函数与等腰三角形教案

二次函数与等腰三角形教案第 1 篇

一、学习目标

  1、掌握二次函数的图象及性质;

  2、会用二次函数的图象与性质解决问题;

  学习重点:二次函数的性质;

  学习难点:二次函数的性质与图像的应用;

  二、知识点回顾:

  函数的性质

  函数函数

  图象a>0a<0

  性质

  三、典型例题:

  例1:已知n是二次函数,求m的值

  例2:

  (1)已知函数n在区间上为增函数,求a的范围;

  (2)已知函数n的单调区间是(0,1),求a;

  例3:求二次函数n在区间[0,3]上的最大值和最小值;

  变式:

  (1)已知m在[t,t+1]上的最小值为g(t),求g(t)的表达式。

  (2)已知m在区间[0,1]内有最大值-5,求a。

  四、限时训练:

  (略)

二次函数与等腰三角形教案第 2 篇

 一、教材分析

  本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

  二、学情分析

  本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

  三、教学目标

  (一)知识与能力目标

  1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

  2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

  (二)过程与方法目标

  通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

  (三)情感态度与价值观目标

  1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

  2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

  四、教学重难点

  1.重点

  通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

  2.难点

  二次函数y=ax2+bx+c(a≠0)的图像的性质。

  五、教学策略与 设计说明

  本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

  六、教学过程

  教学环节(注明每个环节预设的时间)

  (一)提出问题(约1分钟)

  教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

  学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

  目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

  (二)探究新知

  1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

  教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

  学生活动:讨论解决

  目的:激发兴趣

  2.配方求解顶点坐标和对称轴(约5分钟)

  教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

  =0.5(x2-12x+36-36+42)

  =0.5(x-6)2+3

  教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

  学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

  目的:即加深对本课知识的认知有增强了配方法的应用意识。

  3.画出该二次函数图像(约5分钟)

  教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

  学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

  目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

  4.探究y=-2x2-4x+1的函数图像特点(约3分钟)

  教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

  学生活动:学生独立完成。

  目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

  5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

  教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

  学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

  目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

  6.简单应用(约11分钟)

  教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

  教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

  学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

  目的:巩固新知

  课堂小结(2分钟)

  1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

  2. 你对本节课有什么感想或疑惑?

  布置作业(1分钟)

  1. 教科书习题22.1第6,7两题;

  2. 《课时练》本节内容。

  板书设计

  提出问题 画函数图像 学生板演练习

  例题配方过程

  到顶点式的配方过程 一般式相关知识点

  教学反思

  在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

  我认为优点主要包括:

  1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

  2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

  3.板书字体端正,格式清晰明了,突出重点、难点。

  4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

  所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

  1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

  2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

  3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

  4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

  重新去解读这节课的`话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

二次函数与等腰三角形教案第 3 篇

 一、教材分析

  1、教材的地位及作用

  函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

  2、教学目标

  (1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。

  (2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。

  (3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  3、教学的重、难点

  重点:二次函数的概念和解析式。

  难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

  4、学情分析

  ①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。

  ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。

  ③初三学生程度参差不齐,两极分化已形成。

  二、教法学法分析

  1、教法(关键词:情境、探究、分层)

  基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

  2、学法(关键词:类比、自主、合作)

  根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。

  3、教学手段

  采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习兴趣,参与热情,增大教学容量,提高教学效率。

  三、教学过程

  完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:

  (一)、创设情境,温故引新

  以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:

  (1)你们喜欢打篮球吗?

  (2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?

  从而引出课题《二次函数》,导入新课

  (二)、合作学习,探索新知

  为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。

  学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数

  (三)、当堂训练,巩固提高

  由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。

  (四)、小结归纳,拓展转化

  让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。

  (五)、布置作业,学以致用

  作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系.

  四、评价分析

  本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

  五、教学反思

  1、本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。

  2、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。

二次函数与等腰三角形教案第 4 篇

 一、由实际问题探索二次函数

  某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.

  (1)问题中有哪些变量?其中哪些是自变量?哪些因变量?

  (2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?

  (3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。

  果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+60000。

  二、想一想

  在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?

  我们可以列表表示橙子的总产量随橙子树的增加而变化情况.你能根据表格中的数据作出猜测吗?自己试一试。

  三、做一做

  银行的储蓄利率是随时间的变化而变化的。也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)。

  四、二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)

  注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。

  例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数.我们以前学过的正方形面积A与边长a的关系A=a2, 圆面积s与半径r的 关系s=Try2等也都是二次函数的例子。

  随堂练习

  1、下列函数中(x,t是自变量),哪些是二次函数?

  y=-3x.y=x-x+25,y=2+2x,s=1+t+5t

  2、圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝。

  (1)写出y与x之间的关系表达式;

  (2)当圆的半径分别增加1cm、1.5cm、2㎝时,圆的面积增加多少?

  五、课时小结

  1、经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

  2、用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。

  六、活动与探究

  若n是二次函数,求m的值.

  七、作业

  习题2.1

  1、物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t,填表表示物体在前5s下落的高度:

  t/s12345h/m

  2、某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。

  (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?

  (2)如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号