当前位置:首页 > 教案教学设计 > 数学教案

比例教学设计

日期:2022-02-12

这是比例教学设计,是优秀的数学教案文章,供老师家长们参考学习。

比例教学设计

比例教学设计第 1 篇

教学目标

1、进一步巩固比和比例的意义,能正确求比值、化简比、解比例。 2、通过整理,提高归纳、概括知识的能力,加强对知识系统性的认识。

3、培养学生应用数学的意识。

教学重点:理解比和比例之间的联系和区别。

教学难点:理清知识间的联系。

教学流程:

一、 情境导入

我们班有多少名同学?其中男生、女生各有多少名?谁能用比的知识说说我们班男、女生的人数情况?

今天我们一起来整理和复习比和比例的有关知识。

二、 复习整理

(一) 知识板块梳理

昨天老师布置同学们回去对比和比例的知识进行复习和整理,谁来说说你是怎样进行整理的?

根据学生的回答,最后呈现:

1、 比和比例的意义、组成、基本性质及作用。

2、 比和分数、除法的关系。

3、 正比例和反比例的意义和判断方法。

(二) 成果分块汇报

1、 组内交流

(1) 向小组汇报整理好的内容,说说你的整理思路。

(2) 借鉴较好的整理方法,完善自己的整理内容。

(3) 以小组为单位推荐一名组员代表本组汇报整理成果。

2、 展示汇报

请各小组分别上台展示整理成果,介绍整理思路,在各小组充分展示的基础上,最后以表格的方式呈现学生整理的学习成果。

(1) 比和比例的意义,组成和性质。

比例

意义

两个数相除又叫做两个数的比。

表示两个比相等的式子叫做比例。

各部分名称

30 : 50 = 0.6

30 : 50 = 6 : 10

基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个内项的积等于两个外项的积。

基本性质作用

化简比

解比例、组比例、求两个数的比

比和比例的区别:

比表示两个数之间的关系,是一种运算,有两项;而比例是由两个相等的比组成的,是一个等式,有四项。

比和比例的基本性质不同,其作用也不一样。

比分整数比、分数比和小数比三种情况,我们可以运用比的基本性质把分数比和小数比先化成整数比,再化成最简单的整数比;也可以先求出比值,再写成比的形式。

化简比与求比值的联系和区别:

一般方法

结果

化简比

根据比的基本性质,把比的前项和后项都乘或除以相同的数(0除外。)

是一个比,它的前项和后项都是整数。

求比值

根据比值的意义,用前项除以后项

是一个商,可以是整数、小数或分数。

(2) 比和分数、除法的关系。

意义

对应部分

表示两个数相除

比的前项

比号

比的后项

比值

分数

表示一个数

分子

分数线

分母

分数值

除法

表示一种运算

被除数

除号

除数

(3) 正比例和反比例的意义和判断方法。

联系

区别

变化规律

关系式

正比例关系

两种相关联的量,一种量变化,另一种量也随着变化。

相对应的两个数的比值(商)一定

X÷y=k(一定)

反比例关系

相对应的两个数的积一定

Xy=k(一定)

(三) 实际应用

刚才我们整理了比和比例的知识,下面请大家运用这些知识来解决实际问题。

1、 出示例4:李阿姨是剪纸艺人。平时李阿姨每天工作6小时,剪出72张剪纸,节日期间,李阿姨每天要工作8小时,能剪出96张剪纸。

(1) 写出李阿姨平时和节日期间剪纸张数及相应工作时间的比。

(2) 上面两个比能组成比例吗?为什么?

(3) 如果李阿姨要剪120张剪纸,需要多少小时?

学生独立思考、解答。

汇报交流

过程略。

2、 填空题90页练习十七1题。

3、 判断3

4、 学校升旗台是一个长方形,它的周长是36米,如果长和宽的比是4:5.那么这个升旗台的长和宽各是多少米?面积是多少平方米?

5、 小明家书房用方砖铺地,用36平方分米的方砖铺。需要48块;如果改用64平方分米的方砖铺,需要多少块?

三、 总结提升

同学们,这节课我们学习了哪些知识?你有什么收获和感受?

板书设计:

比和比例

1.比和比例的意义、组成、基本性质及作用。

2.比和分数、除法的关系。

3.正比例和反比例的意义和判断方法。

比例教学设计第 2 篇

  教学内容

  教科书第58-59页例1,课堂活动及练习十三1-3题。

  教学目标

  1.使学生理解反比例的意义,能正确判断成反比例关系的量。

  2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。

  3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。

  教学重点

  引导学生正确理解反比例的意义。

  教学难点

  正确判断两种量是否成反比例。

  教学过程

  一、复习旧知,感受新知

  情景游戏:对口令

  (1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。

  表1买同样的面包

  买的数量(个) 1 2 3 4 5……

  总价(元) 2 4 6 8 10……

  教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?

  反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。

  根据学生的回答板书,成正比例的量所具有的三个特征:

  ①两种相关联的量②变化有规律③一定的量

  (2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)

  表2 30个苹果分给小朋友

  小朋友的人数(人) 1 3 5 10……

  每个小朋友分得个数(个)30 10 6 3……

  从这个表中,你有什么发现?

  反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……

  提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?

  教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。

  二、对比探究,获取新知

  1.感知几种不同的变化规律

  (1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。

  表3 60名游客在井冈山游览

  每组人数 3 5 6 15

  组数 20 12 10 4

  教师:谁来说说,你是怎样算每组人数和组数的?

  抽几名学生说出自己的计算方法。

  教师:从这个表中你发现了什么规律?

  反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……

  (2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。

  表4打一篇稿子

  每分打字(个) 120 100 75 50

  所需时间(分) 25 30 40 60

  教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。

  (3)第二天,导游将带领这批游客,行一段路程。

  表5行一段路程

  已行的路程(km) 1 2 3 4

  剩下的路程(km) 19 18 17 16

  填这个表时,你是怎样想的?集体订正。

  表6行一段路程

  路程(km) 12 20 24 36

  时间(时) 3 5 6 9

  集体订正。

  2.分类区别,概括意义

  (1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。

  教师巡视,听取各小组意见,加强指导。

  (2)汇报交流

  反馈1:表1,6分一类,表2,3,4,5分一类。

  反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。

  教师:为什么这样分类?

  引导学生说出:表1,6成正比例分一类;不成正比例的表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。

  教师:现在我们一起来找出表2,3,4的共同特征。

  学生1:每个表中的两种量都相关联。(板书:相关联)

  学生2:一种量变化另一种量也随着变化。

  学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的个数越多。

  学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……

  教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)

  学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)

  正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。

  (3)概括得出反比例的意义

  教师根据学生的回答,引导学生概括得出:

  两种相关联的量。

  一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。

  两种量相对应的两个数的乘积是一定的。

  这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?

  (揭示课题:反比例的意义)

  像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。

  4.举例

  抽生说一说生活中还有哪些成反比例的量。

  学生1:路程一定,所行的时间与速

  5.区分

  表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?

  引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。

  三、直观操作,加深理解

  1、完成第60页课堂活动1题

  教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?

  2、完成第60页课堂活动2题

  3、完成第61页课堂活动3题

  四、巩固练习,深化认识

  练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。

  五、课堂总结

  今天,我们一起学习了什么?你有什么收获?

比例教学设计第 3 篇

  教学目标

  1.使学生能正确判断应用题中涉及的量成什么比例关系.

  2.使学生能利用正、反比例的意义正确解答应用题.

  3.培养学生的判断推理能力和分析能力.

  教学重点

  使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题.

  教学难点

  利用正反比例的意义正确列出等式.

  教学过程

  一、复习准备.(课件演示:比例的应用)

  (一)判断下面每题中的两种量成什么比例关系?

  1.速度一定,路程和时间.

  2.路程一定,速度和时间.

  3.单价一定,总价和数量.

  4.每小时耕地的公顷数一定,耕地的总公顷数和时间.

  5.全校学生做操,每行站的人数和站的行数.

  (二)引入新课

  我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题.这节课我们就来学习比例的应用.

  教师板书:比例的应用

  二、新授教学.

  (一)教学例1(课件演示:比例的应用)

  例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  1.学生利用以前的方法独立解答.

  140÷2×5

  =70×5

  =350(千米)

  2.利用比例的知识解答.

  (1)思考:这道题中涉及哪三种量?

  哪种量是一定的?你是怎样知道的?

  行驶的路程和时间成什么比例关系?

  教师板书:速度一定,路程和时间成正比例

  教师追问:两次行驶的路程和时间的什么相等?

  怎么列出等式?

  解:设甲乙两地间的公路长 千米.

  =

  2 =140×5

  =350

  答:两地之间的公路长350千米.

  3.怎样检验这道题做得是否正确?

比例教学设计第 4 篇

  一、教材分析

  反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。

  二、学情分析

  由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。

  三、教学目标

  知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.

  解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.

  四、教学重难点

  重点:理解反比例函数意义,确定反比例函数的表达式.

  难点:反比例函数表达式的确立.

  五、教学过程

  (1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;

  (2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单

  位:m)随宽x(单位:m)的变化而变化。

  请同学们写出上述函数的表达式

  14631000(2)y= tx

  k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=

  是自变量,y是函数。

  此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。

  当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。

  举例:下列属于反比例函数的是

  (1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)

  已知y与x成反比例,则可设y与x的函数关系式为y=

  k x?1

  k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=

  已知y+1与x-1成反比例,则可设y与x的函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。

  例:已知y与x2反比例,并且当x=3时y=4

  (1)求出y和x之间的函数解析式

  (2)求当x=1.5时y的值

  解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2

  和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业

  通过此环节,加深对本节课所内容的认识,以达到巩固的目的。

  六、评价与反思

  本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号