当前位置:首页 > 教案教学设计 > 数学教案

有理数的乘法教案设计人教版

日期:2022-02-08

这是有理数的乘法教案设计人教版,是优秀的数学教案文章,供老师家长们参考学习。

有理数的乘法教案设计人教版

有理数的乘法教案设计人教版第 1 篇

目标预测

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

★教学重难点

一、重点 :熟练进行有理数的乘除运算

二、难点 :正确进行有理数的乘除运算

预习导学

通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

★教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨 质疑问难

根据预习内容,同学们回答以下问题:

1.有理数的乘法法则:

(1)同号两数相乘___________________________________

(2)异号两数相乘_____________________________________

(3)0与任何自然数相乘,得____

2.有理数的乘法运算律:

(1)乘法交换律:ab=_________

(2)乘法结合律:(ab)c=_______

(3)乘法分配律:(a+b)c=________

3.有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________

比较有理数的乘法,除法法则,发现 _________ 可能转化为__________

三、课堂活动 强化训练

某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?

注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结

四、延伸拓展,巩固内化

例2.(1)若ab=1,则a、b的关系为()

(2)下列说法中正确的个数为( )

0除以任何数都得0

②如果=-

1,那么a是非负数若若⑤(c≠0)⑥()⑦1 的倒数等于本身

A 1个B 2个 C 3个 D 4个

(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )

A 两数相等B 两数互为相反数

C 两数互为倒数 D 两数相等或互为相反数

例3.计算

(1)(2)(3)(4)

例4、计算(1)(2)(3)

引导学生观察算式特点 ,尽可能进行简便运算

五、布置作业,当堂反馈

1.当堂反馈

2.作业 课本P4 8,P49 16、17、18

有理数的乘法教案设计人教版第 2 篇

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。 教学过程

一、导课:

在小学里我们已经学习了正有理数和零的

乘法运算,比如3×2 = 6

我们知道:3×2 = 3 + 3 = 6

用数轴来画出(-3)×2=(-6)

二、设疑自探1:

问题一:丹江口水库的水位每天升高3厘米,4天后,丹江口水库水位的总变化量是多少?

问题二:三峡水库的水位每天上升-3厘米,4天后,三峡水库水位的总变化量是多少?

如果用正号表示水位上升,用负号表示水位下降,那么4天后 3+3+3+3=3×4=12(厘米)3×4=12:

(-3)+ (-3) + (-3) + (-3) = (-3) ×4=-12(厘米)(-3) ×4=-12

从符号和绝对值两个方面来探究:3×4=12、(-3) ×4=-12 两个数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数

(+3) ×(+4)= (-3) ×(+4)=

(+3) ×(+3)= (-3) ×(+3)=

(+3) ×(+2)= (- 3) ×(+2)=

(+3 ) ×(+1)= (-3 ) ×(+1)=

(+3) ×(0)= (-3) × 0 =

(+3) ×(- 1)= (-3) ×(- 1)=

(+3) ×(-2)= (-3) ×(- 2)=

三、设疑自探二:

我们已经知道两个整数想乘结果是正数,现在我们从符号和绝对值两个方面来研究一下三组,看看他们有什么特点

第一组:(-3) ×(+4)= (-12)、(-3) ×(+3)=(-9)、 (- 3) ×(+2)=(-6)、(-3 ) ×(+1)= (-3) 第二组:(-3) ×(- 1)=3、(-3) ×(-2)=6、

(-3) ×(- 3)= 9、(-3) ×(-4)= 12

第三组: (-3) × 0 =0

(+)×(+)= +

( - )×(-)= +

( - )×(+)= -

0 × a = a

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘得0。

非0两数相乘,关键(步骤)是什么?

(1)确定积的符号

(2)求出绝对值之积

例1 计算:⑴ (-4)×5 ⑵(-5)×(-7) 计算:

(1) 9×6 (2)(-9)×6

(3) (-6)×(-1) (4) (-6)×(1)

(5) 2.5×(-6)

(6)(-7.2)×(-5)

(7)(-1000.11) ×0

四、质疑再探

对于本节内容你还有什么疑问?请大胆的提出来,我们共同探讨解决!

五、运用拓展:

1、自编习题

2、(1)3×(-1)=

(2)(-5)×(-1)=

(3)0×(-1)=

(4)(-6)×1=

(5)2×1=

(6)0×1=

(7)1×(-1)=

3、观察下列各式,它们的积是正的还是负的?

(1)(-1) ×(-1)×(-1) ×(-1)

(2) (-1) ×(-1)×(-1)

(3) (-1) ×(-2 )×(-3 )×4

(4) (-1) ×(-2 )×(-3 )×(-4)

(5) (-1) ×(-2 )×(-3 )×(-4)×0

4、填空(用“>”或“<”号连接):

(1)如果a<0,b<0,那么ab 0;

(2)如果a<0,b > 0,那么ab 0; 3

427(3)如果 a > 0,b > 0,那么ab 0;

(4)如果ab<0,那么a 0,b 0;

(5) 如果 ab > 0, 那么a 0,b 0.

(6)如果 ab = 0, 那么___________

1.(+0.4) ×(-0.2) 2.(-1 ) ×(- )

3.(-6) ×(-4+1-6) 4.(-3.7+1.3) ×3

5.(16-26+5) ×(-3.4-1.6)

6. ︳4︳×(-2.9+1.1) 1

4

(1)2×(-6)= (5)2+(-6)=

(2)-7×(-9)= (6)-7+(-9)=

(3)-4× = (7)-4+ =

(4)-6×0= (8)(-6)+0=

六、小结

1、本节课你学到了什么?2、本节课你印象最深的是什么?

有理数的乘法教案设计人教版第 3 篇

一、学情分析:

《有理数的乘法》数学教案

  1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

  2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

  二、 教材分析:

  教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的`运算。

  本节课的数学目标是:

  1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

  2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

  三、教学过程设计:

  本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。

  第一环节:问题情境,引入新课

  问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

  (2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

  设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

  第二环节:探索猜想,发现结论

  问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

  (-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

  (-3)×0=_____。

  (2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

  (-3)×(-1)=_____;

  (-3)×(-2)=_____;

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。

  教后反思事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

  (2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

  第三环节:验证明确结论

  问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

  (—4)×0=_____;

  (—4)×1=_____;

  (—4)×2=_____;

  (—4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

  一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

  教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

  (2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

  (3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

  第四环节:运用巩固,练习提高

  活动内容:

  (1)1。计算:

  ⑴(-4)×5; ⑵(5-)×(-7);

  ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。计算:

  ⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

  (4)计算:

  ⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

  ⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

  教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

  (2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

  (-1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

有理数的乘法教案设计人教版第 4 篇

一、 学情分析:

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

  二、 课前准备

  把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

  三、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?

  学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  a. 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向

  运动

  米

  2 ×3=

  b. -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向

  运动

  米

  -2 ×3=

  c. 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向

  运动

  米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向

  运动

  米

  (-2) ×(-3)=

  e.被乘数是零或乘数是零,结果是人仍在原处。

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  b.积的绝对值等于

  。

  c.任何数与零相乘,积仍为

  。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为

  。

  (3)学生做 P76 练习1(1)(3),教师评析。

  (4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的`符号由

  决定,当负因数个数有

  ,积为

  ; 当负因数个数有

  ,积为

  ;只要有一个因数为零,积就为

  。

  4、 讨论对比,使学生知识系统化。

  有理数乘法

  有理数加法

  同号

  得正

  取相同的符号

  把绝对值相乘

  (-2)×(-3)=6

  把绝对值相加

  (-2)+(-3)=-5

  异号

  得负

  取绝对值大的加数的符号

  把绝对值相乘

  (-2)×3= -6

  (-2)+3=1

  用较大的绝对值减小的绝对值

  任何数与零

  得零

  得任何数

  5、 分层作业,巩固提高。

  六、 教学反思:

  本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

  【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

  探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。

  为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。

  学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。

  本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号