日期:2022-01-26
这是幂的乘方教学设计华师大版,是优秀的数学教案文章,供老师家长们参考学习。
学习目标:
1、能说出积的乘方的运算性质,并会用符号表示、
2、能运用积的乘方法则进行计算,并能说出每一步运算的依据、
3、经历探索积的乘方的'运算性质过程,进一步体会幂的意义,从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳能力、
学习重点:理解并掌握积的乘方法则、
学习难点:积的乘方法则的灵活运用、
学习过程:
【预习交流】
1、预习课本P44到P46,有哪些疑惑?
2、已知:248n=213,那么n的值是( )A、2 B、3 C、5 D、8
3、长方体的长是a2cm,宽是(a2)2cm,高是a3cm,求这个长方体的体积、
4、填上适当的代数式:(1)x3 x4 ( )=x8 (2)(x—y)5 (x—y)4=—[ ]3
5、(1) (2) (3) 、
【点评释疑】
1、课本P44做一做、
(ab)n = =( )( )=anbn
(ab)n=anbn(n是正整数)
积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘、
2、课本P45例3、
3、课本P45议一议、
4、课本P41例4、例5、
5、应用探究
(1)计算:①(—2xx2x3)2②a3a3a2+(a4)2+(—2a2)4 ③( )15(315)3
(2)用简便方法计算
① ②
(3)若x=2m,y=3+4m(m是正整数),用x的代数式表示y、
(4)若2m=6,4n=8,求22m+2n的值、
6、巩固练习:课本P45到P46练习1、2、3、4、
【达标检测】
1、[(—2)106]2 (6102)2 = 、
2、若 (a2 bn)m =a4b6 ,则m = , n = 、
3、(— )8 494= , 0、52004 22004= 、
4、(—x)2 x (—2y)3 +(2xy)2 (—x)3 y = 、
5、下列计算:(1)anan=2an (2) a6+a6=a12 (3) cc5=c5 (4) 3b34b4=12b12 (5) (3xy3)2=6x2y6
中正确的个数为( )A、0 B、1 C、2 D、3
6、下列各式中错误的是( )
A、 B、( ) = C、 D、 —
7、 等于 ( )A、 B、 C、 D、
8、若 则 、 的值分别为( )A、9;5 B、3;5 C、5;3 D、6;12
B组
9、若 xn=5,yn=3 则(xy)2n= 、
10、(—8)20030、1252002= 、
11、 =( ) A、 B、 C、 D、
12、已知 ,则 等于( )
A、 B、 C、 D、
13、若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小、
【总结评价】
积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘、
【课后作业】课本P46习题8、1 1(4)(5)(6)3(2)、5、6、
教学目标:
1.知识与技能
理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.
2.过程与方法
经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.
3.情感、态度与价值观
培养学生合作交流意义和探索精神,让学生体会数学的应用价值.
教学重、难点与关键:
1.重点:幂的乘方法则.
2.难点:幂的乘方法则的推导过程及灵活应用.
3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,要求对性质深入地理解.
教学方法:
采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.
教学过程:
一、创设情境,导入新知
【情境导入】
大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3)
【学生活动】进行计算,并在黑板上演算.
解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为
V木星=·(102)3=?(引入课题).
【教师引导】(102)3=?利用幂的意义来推导.
【学生活动】有些同学这时无从下手.
【教师启发】请同学们思考一下a3代表什么?(102)3呢?
【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,因此(102)3=106.
【教师活动】区分a3和3a的区别。
利用刚才的推导方法推导下面几个题目:
(1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.
【学生活动】推导上面的问题,个别同学上讲台演示,并讲解每一步计算的依据。
【教师引导】请同学们根据所推导的几个题目以及幂的意义,推导一下(am)n的结果是多少?
【学生活动】归纳总结并进行小组讨论,最后得出结论:
(am)n== amn,并用文字来叙述:幂的乘方,底数不变,指数相乘.
评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知,通过从特殊到一般的过程,让学生感受研究问题、获取法则的方法。
二、范例学习,应用所学
【例】计算:
(1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.
【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.
【教师活动】启发学生共同完成例题,教师师范书写过程,一步一步写,不省略步骤,边写边讲解每一步运算的依据,并强调易错点。
【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:
解:(1)(103)5=103×5=1015; (3)(xn)3=xn×3=x3n;
(2)(b3)4=b3×4=b12; (4)-(x7)7=-x7×7=-x49.
说明:请学生上黑板板演,要求规范书写过程,之后给全班同学讲解每一步运算的依据,让学生会算,还要知道为什么能这么算。
三、巩固提升
计算:(1)-x2·x2· (2)(x2)3+x6.
【教师活动】巡视、关注中等、中下的学生,出现问题及时辅导。
【学生活动】在练习本完成,规范书写过程,两名学生黑板上板演。
四、课堂总结,发展潜能
1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方,底数是幂的形式.
方法:底数不变,指数相乘.
2.知识拓展:这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式.
3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.幂的运算中指数的运算比幂的运算低一级。
五、布置作业
完成本节《绩优学案》
学习目标:
1、了解幂的乘方性质
2、能推导幂的乘方性质的过程,并会运用这一性质进行计算
学习重点:幂的乘方运算
学习难点:探索幂的乘方性质的过程
学习过程:
一、学习准备
1、同底数幂的乘法法则:
2、观察思考
幂的乘方规律:(文字叙述)
(符号叙述)
规律条件:①②
规律结果:①②
3、阅读课本第48页例2,完成下面练习:
①下面的计算对不对?如果不对,应怎样改正?
②计算
(8)(9)(10)
二、合作探究:
1、计算:(用两种方法计算);
2、计算:(1);(2);(3);(4)
(5)(a4)3+m(6)(7)
3、若n为正整数,当时,的值为().
A.1B.0C.-1D.1或-1
4、6.成立的条件是().
A.n是正整数B.n是整数C.n是奇数D.n是偶数
5、若则=
6、已知,,求的值
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、计算的结果为().
A.B.C.D.
2、下列计算正确的个数是().
A.1个B.2个C.3个D.4个
3、下列各式的括号内应填入的是().
A.B.C.D.
4、(1)(2)(3)(4)
(5)(6)
思维拓展:
1、下列计算正确的是().
A.B.
CD.
2、若,,求的值
3、(1)若,求正整数m的值
(2)若,求正整数n的值
4、若2x+3y-4=0,求9x?27y的值
5、与的大小关系是。
6、如果等式,则的值为
教材分析
1.本课是《整式乘除与因式分解》的第二课时。这一节课结合同底数幂的乘法的探讨,类比数的运算,分析去括号前后指数的变化情况,可以得到幂的乘方计算法则。
2.去括号前后指数的变化,怎样变化是本小节的主要内容,也是本章的难点,它是积的乘方的基础,也是今后学习整式的乘法的基础,为分解因式的运算作好准备。
学情分析
1、学生基础不好,学困生一半左右,理解能力欠缺,有待智力开发,学生的能力有待进行挖掘,但是大部分学生都喜欢上数学课,上课也爱思考问题,积极回答问题。
2、选用“类比——探索——发现”的认知规律,通过直观教学,借助已学知识来解决问题吸引学生的注意力,体会科学的思想方法,唤起学生的求知欲,激发勇于探索的`精神。
教学目标
知识目标:1.学生通过复习类比探究、观察特例、合作交流,总结幂的乘方法则。
2.通过复习同底数幂的乘法法则的探究,培养学生的观察、发现、归纳、概括等探究创新能力和书面表达能力。
能力目标:探索和寻求幂的乘方的法则,形成分析解决问题的一些基本策略。
情感态度培养:通过组织教学,让学生体验类比学习的方法,科学的态度才能学好数学的情感。
教学重点和难点
重点:掌握幂的乘方的法则。
难点:底数是负数时幂的乘方运算。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号