日期:2022-01-19
这是圆柱的认识新颖的导入,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
知识目标:使学生理解圆的周长和圆周率的意义,自主探究经历圆周长的公式的推导过程,能应用圆周长计算公式解决有关实际问题。
能力目标:培养学生自主探究、合作、推理、归纳、总结的能力,形成解决问题策略。
情感目标:培养学生实事求是的态度以及独立思考,质疑创新的习惯.
教学重点:使学生理解和掌握圆的周长的意义及周长计算公式的推导
教学难点:理解圆周率的意义。
教学流程:
一、创设情境,导入新课
1、导言:随着人们生活水平的日益提高,利用假日乘车外出旅游已经成为一种生活时尚。看!,马力一家正乘车到旅游区度假呢!(播放课件)
师:对马力的问题,发表一下你们的见解吧。
生:……
2、揭示课题。
师:看,这是一个车轮,哪位同学愿意用手比划出它的周长?
生:上台演示。
师:谁能用完整的话概括一下:什么是圆的周长?
生:……
引出圆周长的概念:围成圆的曲线的长叫做圆的周长。
【调控策略:尝试信息技术和教学整合,使原本枯燥乏味的题目变得鲜活、生动。鼓励学生大胆发表自己的看法,唤醒求知欲望,使学习和生活紧密相连。】
二、引导探索,展开新课
(一) 测量圆的周长
师:如果要知道这个车轮的周长你有什么好的办法吗?
1、用滚动的方法测量出圆的周长
师:请你上来把测量的方法展示给大家看看。滚动的长度就是圆的周长。
问:你有什么操作要点要提醒大家?
追问:如果要知道那个圆形草坪的周长,也可以让它在直尺上滚着来量吗?
2、用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。
师:请你上来把测量的方法展示给大家看看。这条线的长度就是圆的周长
问:你有什么操作要点要提醒大家?
师:请同学们同桌合作共同体验一下绳绕的测量方法。
3、2005年10月17日是全中国人民都骄傲的日子,你知道吗?神舟六号环绕地球5天安全着路了。神舟六号绕地球第五圈的时候形成的轨迹是个圆形。那么,用绳测和滚动的方法能测量吗?
4.小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
【调控策略:学生的数学学习不应成为简单的概念、法则、公式的掌握和熟练的过程,而应该更具有探索性和思考性。要求能收集、选择、处理数学信息,并能做出合理的推断和大胆的推测,能结合具体的情景发现、提出和探究数学问题。】
(二)探讨圆的周长与直径的关系
师:看老师耍个小把戏(教师甩动绳系小球,形成一个圆。)
师:你们看的什么?(圆形越来越大就是圆的周长越来越大)
师:仔细观察,圆的周长与什么有关呢?(直径或半径)
师:圆的周长与直径之间是否存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
(2)学生自己验证:
下面四人小组合作,测量一个实物的周长和直径,并填写表格。小组长要依据小组的实际情况进行分工,提高小组合作的有效性。
(3) 观察数据:
师:仔细观察数据,你发现了什么?
①圆的周长是直径的3倍多一些。板书:3倍多一些。(从圆的周长和直径的比值数据可以看出有的同学测量比较精确,他们用实事求是的态度参与到数学知识的探究中,有的同学测量比较马虎,这种不良习惯会成为你迈向成功的绊脚石。)②直径越长圆的周长就越长,但圆周率始终不变。
3、认识圆周率。
(1)揭示圆周率的概念。
师:这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。板书:圆周率
(2)介绍圆周率的历史
师:圆周率是怎么得来的?大家一起一下各自收集到的信息。
师:我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母π代表圆周率。(板书:π)圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将π取两位小数。
(板书:π≈3.14)
(3)师:既然π是个固定的值了,只要知道什么就能求圆的周长?
板书:c=πd c=2πr
(4)推导圆的`周长计算公式。
●提问:甩小球形成的圆的周长你会求吗?
(5)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?
师:到了检验大家学习效果的时候了。
【调控策略:在认真分析教材、研究教材的基础上进行教材整合,使学生形成良好的知识结构。让学生以小组合作的形式进行探究,培养学生的合作意识和创新精神。问题的呈现方式体现多样化,以丰富学生的视野,扩展学生的思维。】
三、初步运用,巩固新知
1. 出示例1 :学生尝试练习,反馈评价。
2、神六绕地球第5周轨道是圆形的,半径是6693千米,你想提什么问题?
3、走钢丝
4.看书质疑。
【调控策略:通过联系实际解决问题,放飞学生思维,领略数学的奥妙,培养学生思维的科学性、深刻性、灵活性、多样性。】
四、照应启思,总结新课
1、组织学生说说收获。!
同学们从四个圆片的周长、直径的变化中(板书:变),看出了圆周率始终不变(板书:不变)。如果我们长期坚持这样从变化中看出不变,你就会变得越来越聪。
2、照应开头。 我们再来看看马力的问题,你能求出马力行驶的路程吗?怎么算?
3、拓展延伸。
(出示右图)现在,绿蚂蚁沿着大圆跑一圈,红蚂蚁沿着两个小圆"∞"的路线跑一圈,谁先跑到?(两只蚂蚁的速度相同,比划路线。)接下来我们用具体数据来验证猜测的结果。
教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:
理解圆周率,能计算圆的周长。
教学难点:
探索并理解圆的周长与直径的商为定值。
教学准备:
大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:
自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr
4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
教学内容:新课标人教版六年级上册第四单元《圆的周长》
教学目标:
(1)使学生理解圆周率的含义,在体验圆周率的形成过程中,让学生发现、总结和运用求圆周长的计算方法。
(2)通过引导学生探究圆周率的形成过程,培养学生动手操作的能力和解决简单的实际问题的能力。
(3)培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过对有关资料的了解,增强学生的民族自豪感。
教学重难点:
重点:理解圆周率的含义,推导和运用求圆周长的计算方法
难点:李洁圆周率的含义。
教学过程:
课前准备:学生4人一组,准备3个实物学具一个计算器,实验报告单、长尺子、绳子、毛线、皮尺、拴着小铁球的绳子
教学过程:
一、整体感知,提出问题。
1、复习周长的概念及学过的圆的相关知识。
师:三年级时我们认识了周长。封闭图形一周的长度,叫做周长。并且学习了长方形的正方形周长。回忆一下什么叫长方形的周长?怎么计算?
生:围成长方形四条边长的总和叫做长方形的周长。长方形的周长等于长加宽的和乘2.
师:正方形的周长呢?
生:围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长乘4.
师:什么是圆的周长呢?谁愿意到前面来指一指这个圆的周长指的是哪儿?
生:上台演示周长
师:我们每个小组都准备了圆形,拿出来互相指一指,看一看哪儿是圆的周长!说完讨论:什么是圆的周长?
学生活动
师:谁愿意试着描述一下什么是圆的周长?
生:汇报
师:一起看一下什么是圆的周长!
演示:圆的周长(板书)
师:用心读一遍,读出关键字读一遍
2、提出问题
师:我们知道了什么是圆的周长。关于圆的周长,你能提出什么有价值的问题,作为我们这节课的学习目标。
预设:(1)如何测量圆的周长?
(2)圆的周长与什么有关?
(3)圆的周长可以计算出来吗?如果可以,公式是什么?
二、自主学习,解决问题。
师:同学们提出的问题非常有价值,下面请同学们利用手中的学具和老师为你们提供的资料来解决这些问题,
问题解决:
(1)自己先想一想怎样测量圆的周长,想出来了,就和小组同学交流一下,看看谁的反方最好;如果想不出,就和小组同学请教一下。
(2)猜想一下,圆的周长可能与什么有关,并举例验证自己的说法是否正确。
(3)小组合作认真测量圆的周长,并准确计算,填写试验报告单,填写完成后,总结出试验的结论。
(4)根据试验结果,推导出圆的周长的计算方法。
学生自主学习,教师参与到小组合作中,进行针对性的指导。
三、汇报交流。
1、交流“如何测量圆的周长”?
师:首先我们来交流第一个问题:如何测量圆的周长?
生:我们小组用绳子绕圆一周,捏紧这两个正好连接的端点,再把线拉直,这两点之间绳子的长就是圆的周长。
生2:我们小组是在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是圆片的周长。
师:大家非常了不起,虽然这些测量的方法不同,但是我们思考一下,这两种方法有没有共同的地方?
生: 都是把圆的周长这条曲线先变成直的线段再来测量。
师:把曲线间接变成一条线段来测量的,这种方法在数学学习中我们以后会经常用到,即化曲为直(电脑演示)
(学生汇报时,边说边上台演示。)
师:下面老师演示一下同学们想出的方法。
电脑演示学生想出的办法(第一是绕绳法第二是滚尺法)
2、交流“圆的周长与什么有关?”。
师: 黑板上这个圆的周长能用刚才的方法测量一下吗?(不能)
师:老师手中有一根拴着小球的绳子,老师转动绳子,仔细观察小球转动时走过所路线是什么图形?(圆形)
师:这个圆的周长你能用刚才的那些方法测量吗?(不能)
师:这说明测量的方法并不适合所有的圆,具有局限性,我们必须得找出一个能够普遍适用的求圆的周长的方法。我们接着交流第二个问题“圆的周长与什么有关?”,哪个小组解决了?
生:我们想圆的周长一定与圆的直径和半径有关。
师:能举例说明吗?
生:我们小组一共有四个圆, 的直径最短,它的周长就最短, 的直径最长,它的直径就最长,所以说,圆的周长一定与圆的直径有关。
师:他们小组说的真是有理有据。还有那个小组可以像他们一样,这样有理有据的来说明自己的看法呢?
生:我们小组 的直径最短,它的周长就最短, 的直径最长,它的直径就最长,所以说,圆的周长一定与圆的直径有关。
师:你们说的和老师课件要演示的内容是一样的,老师真是太佩服你们了。
(屏幕上有三条长短不一的线段,如果我以这三条线段为直径画出三个圆,按你们的说法,哪个圆的周长最长?为什么?
生:答
师:看来圆的直径能够决定圆的大小,由此看来圆的周长与它的直径之间真的有关系,那到底是什么样的关系呢?
生:渎比值,总结圆的周长和直径的比值总是3点多。
师:哪个小组再来读读你们求得的比值。
生读。
师:也就是说,圆的周长总是圆的直径的3倍多一点。这难道是巧合吗?看一下屏幕上刚才的圆是不是也有这种关系!
师:看来无论是大圆还小圆,圆的周长总是直径的3倍多一些,换句话说:圆的周长与它的直径的比值总等于3点多(板书)。根据这个结论,你们推导出圆的周长怎么计算了吗?
3、交流“圆的周长计算方法。”
师:看了老师为大家准备的资料,一定能为大家推导圆周长的计算方法有所启发。
(1)介绍刘徽的《周髀算经》
师:大约2000年前我国有一部数学著作叫《周毕算经》书中就有“周三径一”的说法,意思是圆的周长是直径的3倍,显然这种说法是不精确的,但这个结论在当时已经很了不起了。
师:为什么说周长是直径的3倍不精确呢?我们来看(出示)在这个圆内画了一个多边形,数一数它有几条边?
生答;六条
师:每条边长怎么样?
生答:相等。
师: 我们把边长相等的六边形叫正六边形,观察这个正六边形的边长与这个圆的半径有什么关系?(相等),那这个正六边形的周长是圆半径的几倍?(6倍)是圆直径的几倍?(3倍)也就是说这个正六边形周长与圆直径的比值是3,我们继续看,这个圆形的周长比这个正六边形的周长怎么样?我们刚才说过这个正六边形的周长与圆直径的比是3,那么这个圆周长与直径的比值要比3多一些,所以我们说周三径一的说法不精确,这个3是圆的周长与圆的直径比值的近似值。
师:如果我继续分,我把这个圆等分多少份?(十二)我把几个顶点用线段连接,会得到一个多少边形?(正十二边形)那这个正十二边形的周长也比圆的周长怎么样?(短)但和正六边形的周长比,它的周长更接近圆的周长,这个正十二边形与圆直径的比值为3.105852,这个比值比正六边形与圆直径的比值更接近于圆的周长与它直径的比值。
师:如果接下分,我把这个圆等分成二十四份,那我会得到一个多少边形?想像一下这个正二十四边形的周长就更怎么样了?(演示)
师:按照这个想法继续分,接下来我们会得到一个正四十八边形,那么它的周长会怎样?与圆直径的比值的会怎么样?
师:也就是说在圆内所做正多边形的边数越多,那它的周长是怎样?(更接近圆的周长,它的周长与圆直径的比值也就是更加更加更加接圆的周长与它直径的准确值了。
师:刚才我们所研究的这个方法就是1700年前我国著名数学家刘灰提出的用“割圆术求圆的周长和直径比值的方法,
(2)介绍祖冲之和圆周率。
继刘徽之后在南北朝时期出现了一位伟大的天文学家和数学家,他沿用了刘灰的割圆术的方法,继续研究圆的周长与它直径的比值。
师;你知道他是谁吗?
出示祖冲之
师:老师读,同学们感受一下这个直径3.3333米的大圆有多大,每条边长只有多少?0.852毫米长,想像一下这个正多边形的周长已经和圆的周长怎样了?(非常接近了)然而祖冲之没有停住探究的脚步继续分割,到正24576边形,每条边与圆已经紧密的贴在一起了,正是由于祖冲之的这种不懈努力的精神,最终他算出了圆的周长与它直径的比值在3.1415926-3.1415927之间(板书)这个结论在当时世界上是独一无二的,比欧洲早了至少1000年,读到这大家有什么想说的吗?
师:我们真的应为此感到高兴和自豪,但人们对圆的周长与它直径的比值的研究还远远没有结束。随着数学技术的进一步发展和丰富,人们逐渐发现圆的周长与它直径的比值是一个固定不变的数,而且这个数是一个无限不循环小数。现在人们运用计算机能够算出小数点后上万亿位。
师:这个固定不变的数我们把它叫做圆周率。用字母π表示。指导书写π
师:π是一个无限不循环小数,如果参与到我们计算中会非常麻烦,所以实际应用中我们只取它的近似值π≈3.14.
师:现在我们知道了 π,如果已知这个圆的直径是10厘米(板书)讨论一下怎样求它的周长?
生叙述
师:为什么?
随生叙述板书:
圆的周长=圆的直径×圆周率
师:用字母怎样表示?(出示)
师:如果知道圆的半径是5厘米(板书),那它的周长呢?
随生叙述板书:c=2πr
师:为什么乘2?
生叙述
师:先算出2r,也就是d再和π相乘。
师:通过大家的努力我们完成了这节课的最终目标,得到了圆的周长计算公式是c=πd 和c=2πr,牢记这两个公式,以后大家会经常与它们打交道!
四、巩固练习,迁移应用。
师:学数学就是为了用数学,下面我们用新知识做一些练习!
1、计算小球所走路线的长。
师:下面我们回到课前的那道题:拿出小球,谁有思路能测量出它的周长?
绳子长50厘米
2、判断题
3、一张圆桌的直径是9分米。这张圆桌的周长是多少分米?
4、一个钟的分针长10厘米。这根分针的尖端转动一周所走的路程是多少厘米?
5、神州六号航天飞船绕地球飞行的轨迹是一个圆形,已知这个圆形的直径约是1.34千米,它飞一周所行的路程是多少千米?
6、一个圆形牛栏的半径是12米.要用多长的粗铁丝才能把牛栏围上三圈? (接头处忽略不计)
五、整体收获,收获整体。
师:这节课你有什么收获?
学生谈收获。
师:大家都不约而同的提到了圆周率,的确圆周率π它是一个极其驰名的数,它在各个领域发挥着它不可替代的作用。希望同学们多与π交朋友,把π真正的应用到我们的生活当中。
课下作业:用我们今天的知识,去测量、计算,看看旗杆的直径和周长各是多少?
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆周长的计算公式。
教具准备:多媒体课件三套、系绳的小球。
学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用表示。(指导读写。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。=3.141592653
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号