当前位置:首页 > 教案教学设计 > 数学教案

圆柱的认识板书设计

日期:2022-01-19

这是圆柱的认识板书设计,是优秀的数学教案文章,供老师家长们参考学习。

圆柱的认识板书设计

圆柱的认识板书设计第 1 篇

  教学目标

  (1)能够利用身边的工具测量出圆的周长

  (2)能够掌握多种测量计算圆的周长的方法

  (3)能够说出圆周率小数点7位

  (4)能够了解祖冲之

  (5)能够灵活运用圆的周长计算公式进行计算

  (6)培养学生逻辑推理能力

  (7)对学生进行爱国主义教育

  (8)培养学生的观察、比较、概括和动手操作的能力

  教学重难点

  重点:圆的周长和圆周率的意义

  难点:圆周长公式的推导过程

  教学工具

  Ppt课件、视频、篮球、硬币、瓶盖

  教学过程

  一、讨论探索活动导入

  1、展示实物篮球、瓶盖、硬币

  揭示主题:圆的周长

  2、提问:正方形、长方形的边长是4条边相加就是周长,那圆的周长也和它们一样吗?

  3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)

  4、提问:圆是没有边长的,它只是一条曲线,你们能利用手中的工具将圆的周长测量出来吗?你们能想几种方法出来?

  5、分享测量的方法

  方法:化曲线为直线、滚动、软皮尺测、绳绕圆一周

  二、了解圆周率

  1、提问:观察一下篮球和硬币的直径和周长,你们得出什么结论?

  结论:

  圆的周长与它的直径有关,直径越大,周长越大

  一个圆的周长总是它的直径的3倍多一点

  2、提问:有谁知道圆周率是多少吗?

  圆周率3.1415926535

  3、大家猜一猜圆周率有多少小小数点?

  (展示祖冲之图片以及圆周率的发展史)

  中国古代数学家祖冲之比外国早1000年第一个把圆周率的值精确到7位小数

  圆周率是任意一个圆的周长与它的直径的比值,这个直径是一个固定的数,用字母π表示,它是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

  3、播放视频:歌曲名3.1415

  三、利用公式计算圆的周长

  1、根据圆的周长和直径的关系可以推导出一个圆的周长计算公式,在书上,告诉我是什么?

  公式:C=πd或C=2πr

  2、提问:求圆的周长需要知道哪些条件?

  条件:直径或者半径、π=3.14

  3、例题讲解

  书上第64页例题

  4、做练习题

  (展示ppt)

  课后小结

  圆的周长与它的直径有关,直径越大,周长越大

  圆周率π是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

  圆的周长公式:C=πd或C=2πr

  课后习题

  同样的小组成员,测量一个学校圆形的周长,小组的形式合作完成

圆柱的认识板书设计第 2 篇

教学内容:新课标人教版六年级上册第四单元《圆的周长》

教学目标:

(1)使学生理解圆周率的含义,在体验圆周率的形成过程中,让学生发现、总结和运用求圆周长的计算方法。

(2)通过引导学生探究圆周率的形成过程,培养学生动手操作的能力和解决简单的实际问题的能力。

(3)培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过对有关资料的了解,增强学生的民族自豪感。

教学重难点:

重点:理解圆周率的含义,推导和运用求圆周长的计算方法

难点:李洁圆周率的含义。

教学过程:

课前准备:学生4人一组,准备3个实物学具一个计算器,实验报告单、长尺子、绳子、毛线、皮尺、拴着小铁球的绳子

教学过程:

一、整体感知,提出问题。

1、复习周长的概念及学过的圆的相关知识。

师:三年级时我们认识了周长。封闭图形一周的长度,叫做周长。并且学习了长方形的正方形周长。回忆一下什么叫长方形的周长?怎么计算?

生:围成长方形四条边长的总和叫做长方形的周长。长方形的周长等于长加宽的和乘2.

师:正方形的周长呢?

生:围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长乘4.

师:什么是圆的周长呢?谁愿意到前面来指一指这个圆的周长指的是哪儿?

生:上台演示周长

师:我们每个小组都准备了圆形,拿出来互相指一指,看一看哪儿是圆的周长!说完讨论:什么是圆的周长?

学生活动

师:谁愿意试着描述一下什么是圆的周长?

生:汇报

师:一起看一下什么是圆的周长!

演示:圆的周长(板书)

师:用心读一遍,读出关键字读一遍

2、提出问题

师:我们知道了什么是圆的周长。关于圆的周长,你能提出什么有价值的问题,作为我们这节课的学习目标。

预设:(1)如何测量圆的周长?

(2)圆的周长与什么有关?

(3)圆的周长可以计算出来吗?如果可以,公式是什么?

二、自主学习,解决问题。

师:同学们提出的问题非常有价值,下面请同学们利用手中的学具和老师为你们提供的资料来解决这些问题,

问题解决:

(1)自己先想一想怎样测量圆的周长,想出来了,就和小组同学交流一下,看看谁的反方最好;如果想不出,就和小组同学请教一下。

(2)猜想一下,圆的周长可能与什么有关,并举例验证自己的说法是否正确。

(3)小组合作认真测量圆的周长,并准确计算,填写试验报告单,填写完成后,总结出试验的结论。

(4)根据试验结果,推导出圆的周长的计算方法。

学生自主学习,教师参与到小组合作中,进行针对性的指导。

三、汇报交流。

1、交流“如何测量圆的周长”?

师:首先我们来交流第一个问题:如何测量圆的周长?

生:我们小组用绳子绕圆一周,捏紧这两个正好连接的端点,再把线拉直,这两点之间绳子的长就是圆的周长。

生2:我们小组是在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是圆片的周长。

师:大家非常了不起,虽然这些测量的方法不同,但是我们思考一下,这两种方法有没有共同的地方?

生: 都是把圆的周长这条曲线先变成直的线段再来测量。

师:把曲线间接变成一条线段来测量的,这种方法在数学学习中我们以后会经常用到,即化曲为直(电脑演示)

(学生汇报时,边说边上台演示。)

师:下面老师演示一下同学们想出的方法。

电脑演示学生想出的办法(第一是绕绳法第二是滚尺法)

2、交流“圆的周长与什么有关?”。

师: 黑板上这个圆的周长能用刚才的方法测量一下吗?(不能)

师:老师手中有一根拴着小球的绳子,老师转动绳子,仔细观察小球转动时走过所路线是什么图形?(圆形)

师:这个圆的周长你能用刚才的那些方法测量吗?(不能)

师:这说明测量的方法并不适合所有的圆,具有局限性,我们必须得找出一个能够普遍适用的求圆的周长的方法。我们接着交流第二个问题“圆的周长与什么有关?”,哪个小组解决了?

生:我们想圆的周长一定与圆的直径和半径有关。

师:能举例说明吗?

生:我们小组一共有四个圆, 的直径最短,它的周长就最短, 的直径最长,它的直径就最长,所以说,圆的周长一定与圆的直径有关。

师:他们小组说的真是有理有据。还有那个小组可以像他们一样,这样有理有据的来说明自己的看法呢?

生:我们小组 的直径最短,它的周长就最短, 的直径最长,它的直径就最长,所以说,圆的周长一定与圆的直径有关。

师:你们说的和老师课件要演示的内容是一样的,老师真是太佩服你们了。

(屏幕上有三条长短不一的线段,如果我以这三条线段为直径画出三个圆,按你们的说法,哪个圆的周长最长?为什么?

生:答

师:看来圆的直径能够决定圆的大小,由此看来圆的周长与它的直径之间真的有关系,那到底是什么样的关系呢?

生:渎比值,总结圆的周长和直径的比值总是3点多。

师:哪个小组再来读读你们求得的比值。

生读。

师:也就是说,圆的周长总是圆的直径的3倍多一点。这难道是巧合吗?看一下屏幕上刚才的圆是不是也有这种关系!

师:看来无论是大圆还小圆,圆的周长总是直径的3倍多一些,换句话说:圆的周长与它的直径的比值总等于3点多(板书)。根据这个结论,你们推导出圆的周长怎么计算了吗?

3、交流“圆的周长计算方法。”

师:看了老师为大家准备的资料,一定能为大家推导圆周长的计算方法有所启发。

(1)介绍刘徽的《周髀算经》

师:大约2000年前我国有一部数学著作叫《周毕算经》书中就有“周三径一”的说法,意思是圆的周长是直径的3倍,显然这种说法是不精确的,但这个结论在当时已经很了不起了。

师:为什么说周长是直径的3倍不精确呢?我们来看(出示)在这个圆内画了一个多边形,数一数它有几条边?

生答;六条

师:每条边长怎么样?

生答:相等。

师: 我们把边长相等的六边形叫正六边形,观察这个正六边形的边长与这个圆的半径有什么关系?(相等),那这个正六边形的周长是圆半径的几倍?(6倍)是圆直径的几倍?(3倍)也就是说这个正六边形周长与圆直径的比值是3,我们继续看,这个圆形的周长比这个正六边形的周长怎么样?我们刚才说过这个正六边形的周长与圆直径的比是3,那么这个圆周长与直径的比值要比3多一些,所以我们说周三径一的说法不精确,这个3是圆的周长与圆的直径比值的近似值。

师:如果我继续分,我把这个圆等分多少份?(十二)我把几个顶点用线段连接,会得到一个多少边形?(正十二边形)那这个正十二边形的周长也比圆的周长怎么样?(短)但和正六边形的周长比,它的周长更接近圆的周长,这个正十二边形与圆直径的比值为3.105852,这个比值比正六边形与圆直径的比值更接近于圆的周长与它直径的比值。

师:如果接下分,我把这个圆等分成二十四份,那我会得到一个多少边形?想像一下这个正二十四边形的周长就更怎么样了?(演示)

师:按照这个想法继续分,接下来我们会得到一个正四十八边形,那么它的周长会怎样?与圆直径的比值的会怎么样?

师:也就是说在圆内所做正多边形的边数越多,那它的周长是怎样?(更接近圆的周长,它的周长与圆直径的比值也就是更加更加更加接圆的周长与它直径的准确值了。

师:刚才我们所研究的这个方法就是1700年前我国著名数学家刘灰提出的用“割圆术求圆的周长和直径比值的方法,

(2)介绍祖冲之和圆周率。

继刘徽之后在南北朝时期出现了一位伟大的天文学家和数学家,他沿用了刘灰的割圆术的方法,继续研究圆的周长与它直径的比值。

师;你知道他是谁吗?

出示祖冲之

师:老师读,同学们感受一下这个直径3.3333米的大圆有多大,每条边长只有多少?0.852毫米长,想像一下这个正多边形的周长已经和圆的周长怎样了?(非常接近了)然而祖冲之没有停住探究的脚步继续分割,到正24576边形,每条边与圆已经紧密的贴在一起了,正是由于祖冲之的这种不懈努力的精神,最终他算出了圆的周长与它直径的比值在3.1415926-3.1415927之间(板书)这个结论在当时世界上是独一无二的,比欧洲早了至少1000年,读到这大家有什么想说的吗?

师:我们真的应为此感到高兴和自豪,但人们对圆的周长与它直径的比值的研究还远远没有结束。随着数学技术的进一步发展和丰富,人们逐渐发现圆的周长与它直径的比值是一个固定不变的数,而且这个数是一个无限不循环小数。现在人们运用计算机能够算出小数点后上万亿位。

师:这个固定不变的数我们把它叫做圆周率。用字母π表示。指导书写π

师:π是一个无限不循环小数,如果参与到我们计算中会非常麻烦,所以实际应用中我们只取它的近似值π≈3.14.

师:现在我们知道了 π,如果已知这个圆的直径是10厘米(板书)讨论一下怎样求它的周长?

生叙述

师:为什么?

随生叙述板书:

圆的周长=圆的直径×圆周率

师:用字母怎样表示?(出示)

师:如果知道圆的半径是5厘米(板书),那它的周长呢?

随生叙述板书:c=2πr

师:为什么乘2?

生叙述

师:先算出2r,也就是d再和π相乘。

师:通过大家的努力我们完成了这节课的最终目标,得到了圆的周长计算公式是c=πd 和c=2πr,牢记这两个公式,以后大家会经常与它们打交道!

四、巩固练习,迁移应用。

师:学数学就是为了用数学,下面我们用新知识做一些练习!

1、计算小球所走路线的长。

师:下面我们回到课前的那道题:拿出小球,谁有思路能测量出它的周长?

绳子长50厘米

2、判断题

3、一张圆桌的直径是9分米。这张圆桌的周长是多少分米?

4、一个钟的分针长10厘米。这根分针的尖端转动一周所走的路程是多少厘米?

5、神州六号航天飞船绕地球飞行的轨迹是一个圆形,已知这个圆形的直径约是1.34千米,它飞一周所行的路程是多少千米?

6、一个圆形牛栏的半径是12米.要用多长的粗铁丝才能把牛栏围上三圈? (接头处忽略不计)

五、整体收获,收获整体。

师:这节课你有什么收获?

学生谈收获。

师:大家都不约而同的提到了圆周率,的确圆周率π它是一个极其驰名的数,它在各个领域发挥着它不可替代的作用。希望同学们多与π交朋友,把π真正的应用到我们的生活当中。

课下作业:用我们今天的知识,去测量、计算,看看旗杆的直径和周长各是多少?

圆柱的认识板书设计第 3 篇

  教学内容:

  教科书P 92-93例4、例5,试一试、练一练和练习十四第1-4题

  教学目标:

  1.使学生认识圆的周长,认识圆周率,理解和掌握圆的周长计算公式。应用圆的周长公式计算周长,解决周长计算的简单实际问题。

  2.使学生经历观察、操作、测量、计算和交流、归纳等活动过程,推导圆的周长计算公式,积累推导计算公式的学习过程,发展分析、综合和归纳、概括等思维能力。

  3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,积累参与实验探究,培养实事求是的科学态度,感受探索计算公式的成功,树立学习数学的自信心。

  教学重点:

  理解并掌握圆的周长的计算公式

  教学难点:

  推导圆的周长公式

  教学过程:

  一、教学例4。

  1.谈话:同学们,我们经常听人们说:我买了一个28的自行车。我买了一个24英寸的彩电。这里的28和24英寸都是表示物体规格的数字。

  2.课件出示例4题目及图示,全班交流:你从图中了解哪些信息?

  3.小组交流:从你课前滚动大小不同的圆片的过程中,你有什么发现?

  4.课件演示车轮滚动,验证学生的发现。

  5.全班交流

  你觉得圆的周长和圆的什么关系?(直径越大,圆也就越大,所以周长也越长。因为直径是半径的2倍,所以说圆的周长跟半径也有关。)

  二、教学例5。

  1.课件出示例5,全班交流:这样的实验你们课前做了吗?

  2.拿出课前探究圆周长与圆的直径关系实验单,小组交流并演示自己的探究过程和结果。

  周长/cm 直径/cm 周长除以直径的商

  (保留两位小数)

  3.指名汇报,全班交流。

  ⑴ 各小组派一名同学展示实验记录单,介绍实验过程。

  ⑵ 纵观各组的实验结果,你们有什么发现?

  圆的周长总是直径的3倍多一些。

  4.学生自学课本93页,了解圆周率及我国古代数学家的杰出研究成果。

  5.概括圆周长公式。

  ⑴ 圆周率用字母表示,如果圆周长用字母C表示,直径用字母d表示,谁来说一说、C、d之间有什么关系?

  学生先在小组内交流再全班交流。

  (板书:Cd=,C=d ,C=d)

  ⑵ 求圆的周长用哪个公式?(C=d或C=2r)

  三、巩固拓展

  1.完成试一试

  ⑴ 学生独立计算。⑵ 全班展示交流。

  2.完成练一练。

  3.完成练习十四第1题。

  学生独立计算,再全班交流。

  4.完成练习十四第2题。

  ⑴ 学生独立计算。

  ⑵ 全班展示交流。

  ⑶ 学生订正。

  5.完成练习十四第3题。

  指名口头列式,学生集体计算。

  交流:为什么求是车轮的周长?

  6.完成练习十四第4题。

  学生独立计算后再汇报交流。

  四、总结延伸

  本节课,你有哪些收获?还有什么疑问?

圆柱的认识板书设计第 4 篇

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:

  求圆的直径和半径。

  教学难点:

  灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。

  4 5 8

  2、求出下面各圆的周长。

  C=d c=2r

  3.142 23.144

  =6.28(厘米) =83.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=d C=2r

  (3)根据上两个公式,你能知道

  直径=周长圆周率 半径=周长(圆周率2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m 求:d=?

  解:设直径是x米。

  3.773.14 3.14x=3.77

  1.2(米) x=3.773.14

  x1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米 R=c(2) 求:r=?

  解:设半径为x米。

  3.142x=1.2 1.223.14

  6.28x=1.2 = 0.191

  x=0.191 0.19(米)

  x0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  (1)3.148

  (2)3.1482

  (3) 3.1482+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20xx.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)

  45分钟走了多少厘米? 125.6 =94.2(厘米)

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  四、 作业。

  P65-66 第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号