当前位置:首页 > 教案教学设计 > 数学教案

分数乘整数教学反思与评价

日期:2022-01-04

这是分数乘整数教学反思与评价,是优秀的数学教案文章,供老师家长们参考学习。

分数乘整数教学反思与评价

分数乘整数教学反思与评价第 1 篇

分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课前,我对这些内容进行了一定的复习,再进入分数乘整数的教学。

分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘的积作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。

一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。

这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课—分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法过程中约分时,我让学生用两种方法进行了比赛,如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要先约分”这一要点。

分数乘整数教学反思与评价第 2 篇

  “分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理(也就是分数乘整数的意义),真正做到了算理与算法相结合。

  基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。

  如上述案例中,关注学生转化的思想就是本课时教学的重中之重。数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。

  今天这节课的算理看似简单,其实理解还是有困难的。根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理。因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。

  数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。

  课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。

分数乘整数教学反思与评价第 3 篇

  《分数与整数相乘》是青岛版六年级上册分数乘法单元的开启课,是在学生掌握整数数乘法、理解分数的意义和基本性质,以及同分母分数加法的基础上进行教学的,这是学生首次接触分数乘法。分数与整数相乘在运算意义上与整数乘法一致,因而算法是教学的重点。

  《课程标准》强调从学生的熟悉的生活经验和学习经验,让数学学习成为学生“生动活泼、主动发展和富有个性的过程”,我在这节课教学中努力的引导学生实现以下几点设想:

  1、结合现实的问题情境,引导学生理解分数乘法的意义。计算课是比较单调和枯燥的,为了避免单纯的机械计算,我将计算学习与解决问题有机结合。创设了班里同学为教师节做装饰花的实际情境,引导学生根据实际问题的数量关系,列出算式。这里分了两个层次,首先是求三个不同加数的和,只能用加法计算,然后求三个相同加数的和,有了这种对比,学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出×3的结果。

  2、借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,放手让学生尝试计算,着重让学生说一说计算的思考过程。教材的例题侧重体现加法和乘法之间的转化,但在教学实践中,我发现有的学生脱离不了加法计算的拐棍,认识停留在用加法计算的层面,对乘的方法没有主动构建的内驱力。我将板书进行了调整,连加和乘写在两个算式,逼迫学生学生借助同分母分数加法的计算方法去思考怎么乘?板书对照清楚明晰,学生很容易发现乘的计算方法,并且脱离了沿用分子相加的不合理算法。

  由于用不同加数连加导入,再出现相同加数相加,学生可以不借助示意图,很容易运用已有的整数乘法的经验理解分数与整数相乘就是求几个几分之几相加。示意图的.另一个作用是要显示出3个3/10的结果是9/10,由于,我先让学生计算了加法算式,所以示意图的作用就不再必要了。所以,我在教学中没有使用示意图。从实际教学效果来看,这样处理符合学生的认知水平。

  3、通过体验和比较,帮助学生体会到先约分再计算可以使计算过程简便。课程标准倡导我们尊重学生学习水平的差异,鼓励算法多样化的同时,也重视方法的优化。

分数乘整数教学反思与评价第 4 篇

  分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进了一定的复习,再进入分数乘整数的教学。分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知涂图形的过程。

  一、关注学生的学习状态

  从学生已有的知识经验出发,复习几个相同分数和的计算方法。从而让学生感知分数乘法的意义—————求几个相同分数和的简便运算。在此基础上学生很容易从加法的角度联想到分数乘整数的方法,这种顺向迁移,对学生的学习作用很大。在学生研究分数乘法的计算方法中,用以前所学的知识来解释和理解分数乘整数的计算方法,学生理解起来也很容易。教师运用新知与旧识的密切联系,让学生在认知的最近发展领域自由学习并有所收获,学生的学习是积极有效的。

  二、让学生感受,学生才会感悟

  对于学生而言,计算方法没有难度。但是形成先约分后计算的计算习惯确实在教学中的难点。来自学生的困惑:为什么一定要先约分,不约分也可以计算出结果。只有让学生真正感受到约分的优势,以及不约分计算的弊端,学生才会自发的先约分后计算。先设计简单的数据,学生既可以先约分再计算,也可以先计算再约分。因为数据简单,所以无论哪一种学生都可以得到正确答案。再设计7/22×33这道题,学生先计算后数据比较大,看不出公因数没有办法约分。所以学生中出现两种答案。这时两种方法进行比较,感受先约分数据小容易,先计算数据大很难约分。只有经历过这种错误的学生才有深刻的感受——————先约分再计算,计算更方便。

  三、掌握方法、提高计算能力

  在这节课上,重点让学生理解和掌握的分数乘整数的计算方法,但是学生的计算能力的训练体现的不多。如果学生在课堂上的计算能力能够有所提高,这样一节计算课的效果就更好了。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号