当前位置:首页 > 教案教学设计 > 数学教案

二次函数的图象和性质教学设计

日期:2021-12-27

这是二次函数的图象和性质教学设计,是优秀的数学教案文章,供老师家长们参考学习。

二次函数的图象和性质教学设计

二次函数的图象和性质教学设计第 1 篇

  本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

  通过本节课教学,得出几点体会:

  1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

  2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

  3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的'独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

  本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。

二次函数的图象和性质教学设计第 2 篇

本节课的复习目标是:①能根据已知条件确定二次函数的解析式、开口方向、顶点和对称轴。②理解并能运用二次函数的图象和性质解决有关问题。本节课的重、难点是:二次函数图象和性质的综合应用。我立足于学生自主复习,师生合作探究的形式完成本节课的教学任务。

首先我让学生课前完成二次函数图象和性质的基础训练,促使学生对二次函数图象和性质的知识点全面梳理和掌握。课上我用投影仪检查一名学生完成课前复习情况,其他学生交换批改,发现最后一小条有部分学生有问题,我及时评讲分析,帮助学生解决。

接着,师生合作探究本节课的例题。本例是用已知抛物线解决7个问题,这7个问题是我从全国2016年中考试题中整理出来的,它代表了中考的方面。问题1是用顶点式求出抛物线的解析式再通过解析式求与坐标轴的交点,通过观察图象我又提出了x为何值时,y>0,y<0?以及图中△AOC与△DCB有何关系,进一步培养学生发现问题解决问题的能力。问题2、问题3、问题4是抛物线的平移、轴对称和旋转的题目。主要是让学生抓住抛物线的顶点和开口方向来完成。这种类型的题目也有少数同学从坐标点的对称角度来解决也是可行的,并且方便记忆,对于这两种方法我让学生作了及时的归纳小结。问题5和问题6是关于抛物线的最值问题。问题5是利用抛物线的对称性解决三角形的周长最小的题目。学生通过作图能独立解决并求出点的坐标。问题6是本节课的重点,它通过建立目标函数解决四边形面积的极值。本题目关键是引导学生如何设点的坐标,将四边形的面积转化成我们熟悉的三角形(或直角梯形)来建立函数关系式。通过这条题进一步培养学生建立函数模型的思想。本题让学生充分合作交流,最后,让学生在自主探索中获取新的知识。通过观察图象求出了四边形的面积后,我又提出如何求△BCF的面积的最大值的问题,让本题得到进一步的升华,培养学生的创新思维。问题7是在抛物线上探求点存在性问题,引导学生先作出符合条件的平行四边形,再判断点是否在抛物线上,本题着重培养了学生数形结合的思想方法。

这7个问题由浅入深,循序渐进推出,符合学生的认知规律,使学生对二次函数图象和性质有了进一步的理解和提高。

本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。通过这堂公开课,我受益匪浅,感受颇多,让我在如何备复习课,准确把握重点,突破难点方面有了很大的提高,同时在驾驭课堂能力方面有了很大的进步。今后我将在如何提高有效课堂效率方面多下功夫,使自己教育教学水平更上一个台阶。

二次函数的图象和性质教学设计第 3 篇

一、教材分析

本节课“二次函数的图象与性质”内容,主要是能够利用描点法准确画出二次函数的图象,确定二次函数的性质特征。在利用描点法画二次函数图象时,其具体步骤是:确定自变量取值范围,分析x、y的变化规律,估量函数图象的位置和趋势,通过“列表―描点―连线”这一系列步骤画出函数图象,并由此得出画函数图象的规律所在。

二、教学目标

教学目标:1.学生能够使用描点法画出二次函数y=ax2的图象,掌握抛物线相关概念知识;2.学生通过对二次函数y=ax2图象的分析,确定其性质特征,对学生的自主学习能力和探究思维的培养起到较大的促进作用。

教学重点:学生能够使用描点法画出二次函数y=ax2的图象,掌握抛物线相关概念知识。

教学难点:学生能够使用描点法画出二次函数y=ax2的图象,能够通过对二次函数y=ax2图象的分析,确定其性质特征。

三、学情分析

九年级学生学习积极性比较高,学习能力也不差,他们在学习数学知识的过程中,善于使用直观思维,并能够对直观图象进行抽象概括,其认知水平已处于一个上升趋势。在学习本节课之前,学生已熟练掌握一次函数的相关知识和函数图象的描点法,同时也基本掌握了二次函数的相关概念,做好了学次函数的前期知识积累,为顺利学好“二次函数y=ax2的图象与性质”提供了保障。

四、教学过程

(一)旧知引入

师:一次函数的相关知识,同学们还记得吗?

生:记得。

师:那什么是一次函数?

生1:形如y=ax+b的函数,其中a、b为常数,且a≠0。

师:回答正确。谁能够使用我们学过的描点法把一次函数的图象画出来呢?(请一个学生说出描点法的步骤,并上台将一次函数的图象画在黑板上)

生2:描点法有列表―描点―连线这三个步骤,首先要建立一个直角坐标系,接着取x为任意值,将其代入函数中求出y的结果,然后把每一对x、y所对应的数值在坐标轴上一一准确描出,最后把这些点一一连接成线。(学生上台画图)

师:这位同学回答得不错,图象也画得很正确。大家仔细看图象,试着总结出画图的规律?

(学生深入思索,交流讨论,得出各种各样的答案)

师:看刚才的同学画一次函数的图象的整个过程,我们就应该知道,只要求出足够多的点坐标,把点一一对应连接,就可以得出函数的图象。这节课我们要学习的二次函数的图象也可以用这个方法。

[设计意图]在学习“二次函数的图象与性质”之前,学生已经熟练掌握一次函数的相关知识,虽然一次函数和二次函数在概念、图象以及性质等方面存在差异,但是学生可以利用在学习一次函数时的模式来学次函数,这样可以唤起学生对函数的熟悉度,降低学生学习新知识的紧张心理,让学生能够顺利开展二次函数的学习。

(二)探究新知

1.画图:画y=2x2与y=-2x2的图象。(学生独立完成,并邀请一名学生到讲台上将自己所画的图象板演出来)

步骤如下:(1)列表。在自变量取值范围内(全体实数),选择适当的x值,并计算相应的y值,完成表格;(2)描点。以自变量与其对应的函数值分别为横、纵坐标,建立直角坐标系,将其对应值在坐标轴上一一准确描出;(3)连线。使用平滑曲线,将描好的对应点一一连接,二次函数y=2x2与y=-2x2的图象就完成了。

[设计意图]让学生回忆描点法作图的注意事项,并动手完成图象的绘制,体会二次函数图象与一次函数、反比例函数图象的异同点,为学生讨论二次函数图象的性质做好铺垫。

2.观察图象:要求学生认真观察画好的二次函数y=2x2与y=-2x2的图象,从图象的形状、开口方向、位置、增减性、最高(低)点,以及图象是否与对称轴有交点这六个方面思考、讨论,最后总结出二次函数的性质。

学生在观察图象后进行了积极发言,其答案各种各样,有对有错,教师有针对性地对学生的回答进行了点评,并做出归纳:

①图象:y=2x2与y=-2x2的图象都呈抛物线状态,都是轴对称图形,对称轴是y轴。

②y=2x2与y=-2x2的图象与对称轴都有交点,交点坐标(0,0)。

③开口方向:y=2x2的开口方向向上,y=-2x2的开口方向向下。

④位置:y=2x2在x轴上方,y=-2x2在x轴的下方。

⑤增减性:y=2x2:x0时,x增大y增大。y=-2x2与y=2x2的情况正好相反。

⑥最高(低)点:y=2x2有最低点(0,0),y=-2x2有最高点(0,0)。

[设计意图]教师设置的思考题,有效地为学生指明了探究的方向,避免了学生进入盲目探究的极端,节约了时间,提高了课堂效率。

(三)总结

二次函数y=2x2的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。

(四)作业(略)

五、教学反思

教师在整个教学情境中,与学生一起实践、一起思考,把教师的点拨与学生的解决问题有机结合起来,培养了学生自主学习的能力和深入探究的精神。同时在教学过程中对于学生勇于实践、大胆发表自己的见解做出及时性的、激励性的评价。

二次函数的图象和性质教学设计第 4 篇

  教学目标

  【知识与技能】

  使学生理解并掌握函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x—h)2+k的图象的开口方向、对称轴和顶点坐标。

  【过程与方法】

  让学生经历函数y=a(x—h)2+k性质的探索过程,理解并掌握函数y=a(x—h)2+k的性质,培养学生观察、分析、猜测、归纳并解决问题的能力。

  【情感、态度与价值观】

  渗透数形结合的数学思想,培养学生良好的学习习惯。

  重点难点

  【重点】

  确定函数y=a(x—h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x—h)2+k的性质。

  【难点】

  正确理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x—h)2+k的性质。

  教学过程

  一、问题引入

  1。函数y=x2+1的图象与函数y=x2的图象有什么关系?

  (函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的。)

  2。函数y=—(x+1)2的图象与函数y=—x2的图象有什么关系?

  (函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移一个单位得到的。)

  3。函数y=—(x+1)2—1的图象与函数y=—x2的图象有什么关系?函数y=—(x+1)2—1有哪些性质?

  (函数y=—(x+1)2—1的图象可以看作是将函数y=—x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=—1,顶点坐标是(—1,—1)。)

  二、新课教授

  问题1:你能画出函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象吗?

  师生活动:

  教师引导学生作图,巡视,指导。

  学生在直角坐标系中画出图形。

  教师对学生的作图情况作出评价,指正其错误,出示正确图形。

  解:(1)列表:

  xy=—x2y=—(x+1)2y=—(x+1)2—1

  …………

  —3——2—3

  —2—2——

  —1—0—1

  00——

  1——2—3

  2—2——

  3——8—9

  …………

  (2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;

  (3)连线:用光滑曲线顺次连接各点,得到函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象。

  问题2:观察图象,回答下列问题。

  函数开口方向对称轴顶点坐标

  y=—x2向下x=0(0,0)

  y=—(x+1)2向下x=—1(—1,0)

  y=—(x+1)2—1向下x=—1(—1,—1)

  问题3:从上表中,你能分别找到函数y=—(x+1)2—1,y=—(x+1)2与函数y=—x2的图象之间的关系吗?

  师生活动:

  教师引导学生认真观察上述图象。

  学生分组讨论,互相交流,让各组代表发言,达成共识。教师对学生回答错误的地方进行纠正,补充。

  函数y=—(x+1)2—1的图象可以看成是将函数y=—(x+1)2的图象向下平移1个单位得到的。

  函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移1个单位得到的。

  故抛物线y=—(x+1)2—1是由抛物线y=—x2沿x轴向左平移1个单位长度得到抛物线y=—(x+1)2,再将抛物线y=—(x+1)2向下平移1个单位得到的。

  除了上述平移方法外,你还有其他的平移方法吗?

  师生活动:

  教师引导学生积极思考,并适当提示。

  学生分组讨论,互相交流,让各组代表发言,达成共识。

  教师对学生回答错误的地方进行纠正,补充。

  抛物线y=—(x+1)2—1是由抛物线y=—x2向下平移1个单位长度得到抛物线y=—x2—1,再将抛物线y=—x2—1向左平移1个单位得到的。

  问题4:你能发现函数y=—(x+1)2—1有哪些性质吗?

  师生活动:

  教师组织学生讨论,互相交流。

  学生分组讨论,互相交流,让各组代表发言,达成共识。

  教师对学生回答错误的地方进行纠正,补充。

  当x—1时,函数值y随x的增大而增大;当x—1时,函数值y随x的增大而减小;当x=—1时,函数取得最大值,最大值y=—1。

  三、典型例题

  【例】 要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?

  师生活动:

  教师组织学生讨论、交流,如何将文字语言转化为数学语言。

  学生积极思考、解答。

  指名板演,教师讲评。

  解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x—1)2+3(0≤x≤3)。

  由这段抛物线经过点(3,0)可得0=a(3—1)2+3,

  解得a=—,

  因此y=—(x—1)2+3(0≤x≤3),

  当x=0时,y=2。25,也就是说,水管的长应为2。25 m。

  四、巩固练习

  1。画出函数y=2(x—1)2—2的图象,并将它与函数y=2(x—1)2的图象作比较。

  【答案】函数y=2(x—1)2的图象可以看成是将函数y=2x2的'图象向右平移一个单位得到的,再将y=2(x—1)2的图象向下平移两个单位长度即得函数y=2(x—1)2—2的图象。

  2。说出函数y=—(x—1)2+2的图象与函数y=—x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标。

  【答案】函数y=—(x—1)2+2的图象可以看成是将函数y=—x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)。

  五、课堂小结

  本节知识点如下:

  一般地,抛物线y=a(x—h)2+k与y=ax2的形状相同,位置不同,把抛物线y=ax2向上(或下)向左(或右)平移,可以得到抛物线y=a(x—h)2+k。平移的方向和距离要根据h、k的值来确定。

  抛物线y=a(x—h)2+k有如下特点:

  (1)当a0时,开口向上;当a0时,开口向下;

  (2)对称轴是x=h;

  (3)顶点坐标是(h,k)。

  教学反思

  本节内容主要研究二次函数y=a(x—h)2+k的图象及其性质。在前两节课的基础上我们清楚地认识到y=a(x—h)2+k与y=ax2有密切的联系,我们只需对y=ax2的图象做适当的平移就可以得到y=a(x—h)2+k的图象。由y=ax2得到y=a(x—h)2+k有两种平移方法:

  方法一:

  y=ax2

  y=a(x—h)2

  y=a(x—h)2+k

  方法二:

  y=ax2

  y=ax2+k

  y=a(x—h)2+k

  在课堂上演示平移的过程,让学生切身体会到两种平移方法的区别和联系,这里利用几何画板软件效果会更好。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号