当前位置:首页 > 教案教学设计 > 数学教案

解二元一次方程组教学设计

日期:2021-12-24

这是解二元一次方程组教学设计,是优秀的数学教案文章,供老师家长们参考学习。

解二元一次方程组教学设计

解二元一次方程组教学设计第 1 篇

第一课时

一、教学目标

1.使学生掌握由一个二元二次方程和一个可以分解为两个二元一次方程组成的方程组的解法.

2.通过例题的分析讲解,进一步提高学生的分析问题和解决问题的能力;

3.通过一个二元二次方程解法的分析,使学生进一步体会“消元”和“降次”的数学思想方法,继续向学生渗透“转化”的辨证唯物主义观点.

二、重点·难点·疑点及解决办法

1.教学重点:通过把一个二元二次方程分解为两个二元一次方程来解由两个二元二次方程组成的方程组.

2.教学难点:正确地判断出可以分解的二元二次方程.

3.教学疑点:降次后的二元一次方程与哪个方程重新组成方程组,一定要分清楚.

4.解决办法:(1)看好哪个二元二次方程能分成两个二元一次方程,它们之间是“或”的关系,不能联立成方程组.(2)分解好的二元一次方程应与另一个二元二次方程组成两个二元二次方程组.

三、教学过程

1.复习提问

(1)我们所学习的二元二次方程组有哪几种类型?

(2)解二元二次方程组的基本思想是什么?

(3)解由一个二元一次方程和一个二元二次方程组成的方程组的基本方法是什么?其主要步骤是什么?

(4)解方程组:.

(5)把下列各式分解因式:

①;②;③.

关于问题设计的说明:

由于二元二次方程组的第一节课已经向学生阐明了我们所研究的二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由

两个二元二次方程所组成的方程组.由于第一种类型我们已经研究完,使学生自然而然地接

受了第二种类型研究的要求.关于问题(2)的提出,由于两种类型的二元二次方程组的解题思想均为“消元”和“降次”,所以问题(2)让学生懂得“消元”和“降次”的数学思想,贯穿于解二元二次方程组的始终.问题(3)、(4)是对上两节课内容的复习,以便学生对已学过的知识得到进一步的巩固.由于本节课的学习内容是由两个二元二次方程组成的二元二次方程组的解法,其中有一个二元二次方程可以分解,因此,问题(5)的设计是为本节课的学习内容做准备的.

2.例题讲解

例1解方程组

分析:这是一个由两个二元二次方程组成的二元二次方程组,其解题的基本思路仍为“消元”、“降次”,使之转化为我们已经学过的方程组或方程的解法.那么如何转化呢?关于转

化的形式有两种,要么降二次为一次,要么化二元为一元我们通过观察方程组中的两个方程有什么特点,可以发现:方程组(2)的右边是0,左边是一个二次齐次式,并且可以分解为,因此方程(2)可转化为,即或,从而可分别和方程(1)组成两个由一个二元一次方程和一个二元二次方程组成的二元二次方程组,从而解出这两个方程组,得到原方程组的解.

解:由(2)得

因此,原方程组可化为两个方程组

解方程组,得原方程组的解为

说明:本题可由教师引导学生独立完成,教师应对学生的解题格式给予强调.

例2解方程组

分析:这个方程组也是由两个二元二次方程组成的方程组,通过认真的观察与分析可以

发现方程(2)的左边是一个完全平方式,而右边是完全平方米,因此将右边16移到左边后可利用平方差公式进行分解,,即或,从而可仿例1的解法进行.

解:由(2)得

.

即,或.

因此,原方程组可转化为两个方程组

解这两个方程组,得原方程组的解为

巩固练习:

1.教材P60中1.此练习可让学生口答.

2.教材P60中2.此题让学生独立完成.

四、总结扩展

本节小结,内容较为集中并且比较简单,可引导学生从两个方面进行总结:(1)本节课学习了哪种类型的方程组的解法;(2)这种类型的方程组的解题步骤如何?

这节课我们学习了由两个二元二次方程组成的并且有一个方程是可以分解成两个二元一次方程的方程组的解法,解这种类型的方程组的步骤是将原二元二次方程组转化为两个已学习过的二元二次方程组,从而求出原方程组的解.

关于比较特殊的二元二次方程组的解法,教师可以利用辅导课的时间补充两个二元二次方程都可以分解的二元二次方程组的解法.

五、布置作业

1.教材P61A1,2,3.

六、板书设计

探究活动

若关于的方程只有一个解,试求出值与方程的解.

解:化简原方程,得(1)

当时,原方程有惟一解,符合题意.

当时,方程(1)根据的判别式

,故方程(1)总有两个不同的实数解,按题意其中必有一根是原方程的增根,原方程可能产生的增根只是0或1.

把代入(1),方程不成立,不合题,故增根只能是,把代入(1)得,此时方程为,

当时,分式方程的解为;当时,分式方程的解为.

解二元一次方程组教学设计第 2 篇

  一.教学目标:

  1.认知目标:

  1)了解二元一次方程组的概念。

  2)理解二元一次方程组的解的概念。

  3)会用列表尝试的方法找二元一次方程组的解。

  2.能力目标:

  1)渗透把实际问题抽象成数学模型的思想。

  2)通过尝试求解,培养学生的探索能力。

  3.情感目标:

  1)培养学生细致,认真的学习习惯。

  2)在积极的教学评价中,促进师生的情感交流。

  二.教学重难点

  重点:二元一次方程的意义及二元一次方程的解的概念。

  难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  三.教学过程

  (一)创设情景,引入课题

  1.本班共有40人,请问能确定男女生各几人吗?为什么?

  (1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

  (2)这是什么方程?根据什么?

  2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?

  3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?

  两个方程中的x表示什么?类似的两个方程中的y都表示?

  像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

  4.点明课题:二元一次方程组。

  (设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

  (二)探究新知,练习巩固

  1.二元一次方程组的概念

  (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

  [让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

  (2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

  ①x²+y=0 ②y=2x+4 ③y+½x ④x=2/y+1 ⑤(x+y)/3-2=0

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

  2.二元一次方程组的解的概念

  (1)由学生给出引例的答案,教师指出这就是此方程组的解。

  (2)练习:把下列各组数的题序填入图中适当的位置:

  方程x+y=0的解,方程2x+3y=2的解,方程组的解。

  (3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

  (4)练习:已知是方程组的解,求a,b的值。

  (三)合作探索,尝试求解

  现在我们一起来探索如何寻找方程组的解呢?

  1.已知两个整数x,y,试找出方程组的解.

  学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

  一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

  (设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

  2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

  (1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

  由学生独立完成,并分析讲解。

  3.例 已知方程3X+2Y=10

  ⑴当X=2时,求所对应的Y 的值;

  ⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;

  ⑶用含X的代数式表示Y;

  ⑷用含Y 的代数式表示X;

  ⑸当X=-2,0 时,所对应的Y值是多少;

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

  (四)课堂小结,布置作业

  1.这节课学哪些知识和方法?

  2.你还有什么问题或想法需要和大家交流?

  3.教材P82

  教学设计说明:

  1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

  2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

  3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

解二元一次方程组教学设计第 3 篇

  教学目标:

  1.会用加减消元法解二元一次方程组.

  2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

  3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的'思想方法.

  教学重点:

  加减消元法的理解与掌握

  教学难点:

  加减消元法的灵活运用

  教学方法:

  引导探索法,学生讨论交流

  教学过程:

  一、情境创设

  买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

  设苹果汁、橙汁单价为x元,y元.

  我们可以列出方程3x+2y=23

  5x+2y=33

  问:如何解这个方程组?

  二、探索活动

  活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

  2、这些方法与代入消元法有何异同?

  3、这个方程组有何特点?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解这个方程得:y=4

  把y=4代入③式

  则

  所以原方程组的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解这个方程得:x=5

  把x=5代入①式,

  3×5+2y=23

  解这个方程得y=4

  所以原方程组的解是x=5

  y=4

  把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

  三、例题教学:

  例1.解方程组x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  将代入①,得

  解这个方程得:

  所以原方程组的解是

  巩固练习(一):练一练1.(1)

  例2.解方程组5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

  ②×3,得

  4x-6y=-10④

  ③—④,得:

  11x=22

  解这个方程得x=2

  将x=2代入①,得

  5×2-2y=4

  解这个方程得:y=3

  所以原方程组的解是x=2

  y=3

  巩固练习(二):练一练1.(2)(3)(4)2.

  四、思维拓展:

  解方程组:

  五、小结:

  1、掌握加减消元法解二元一次方程组

  2、灵活选用代入消元法和加减消元法解二元一次方程组

  六、作业

  习题10.31.(3)(4)2.

解二元一次方程组教学设计第 4 篇

  一、学习内容分析:

  执教者钱嘉颖时间XXXX年6月12日

  1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)

  2、教材内容简要分析

  教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

  3、学习内容分析表:

  知识点

  重点

  难点

  编号

  内容

  1

  二元一次方程组定义及特点

  二元一次方程组的两个特点

  二元一次方程组成立的条件(未知数要同时满足两个条件)

  2

  二元一次方程组

  代入消元法

  代入消元法的具体解法

  消元法与一元一次方程解法间的联系

  3

  二元一次方程组实际运用

  以实际例题列出方程并解答

  未知数的假设以及运用已知条件列出正确方程。

  二、学习者分析:

  本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

  三、课题教学目标:

  四、教学策略:

  1、教学顺序

  (1)复习已学过的一元一次方程知识引入开篇实例。

  (2)以一元一次方程解释实例引导对于二元的思考。

  (3)以二元一次方程的方法建立方程,进而介绍二元一次方程组的定义及特点并巩固。

  (4)以本例引发思考二元一次方程组的解法。

  (5)介绍二元一次方程组消元法的运用,并进行随堂练习以及随堂解答。

  (6)在确定学生掌握消元法后进入二元一次方程组的实例运用讲解以及随堂练习。

  (7)复习、回忆、巩固本次课程的主要内容,介绍课外延伸内容。

  2、教学活动程序

  (1)引起注意

  以“上课”号令以及播放PPT唤起学习者的注意。

  (2)告诉学习者目标

  以PPT的播放以及言语刺激,明确告诉学习者本次课的内容是学习二元一次方程组,本次学习的目标是掌握二元一次方程组的消元法以及二元一次方程的实例运用。

  (3)刺激对先前知识的回忆

  回忆之前学过的一元一次方程的主要内容(定义、解法、实际运用),以实例进行先前内容的回忆并且充分利用原有的认知结构中关于一元一次方程的列式观念来与新学的二元一次方程产生共鸣。

  (4)呈现刺激材料

  在讲解过程中伴随着PPT的播放,并在关键需要注意的部分进行板书强调,在语调上有所突出。

  (5)提供学习指导

  以教材内容为指导,以及教师的提示语和示范性行为等进行引导。

  (6)诱导行为

  在重点部分题型注意,进行随堂练习,分为详细解答和对答案两种方式。在详细解答时要求同学与老师一同进行,必要时提问同学,让学习者参与进来,更好的理解信息并掌握学习内容。

  (7)提供反馈

  在学习者作出反应、表现出行为之后,及时让学习者知道学习结果,从而使学习者能肯定自己的理解与行为正确与否,以便及时更正。

  (8)评定行为

  以随堂测验的方式进行随堂评定,并且在课后布置习题让同学们课后完成,再由教师进行评定。

  (9)增强记忆与促进迁移

  设置教学活动(见附录),强化刺激,为学习者加深印象,并且促使其发散思维,将学习的知识广泛运用。

  3、教学组织形式

  本次教学中选择运用了以下几种教学组织形式

  (1)讲解的`形式

  以教师的说明和解释为主,向学生传输新信息,是本次教学主要形式,因本次教学内容的特征,这种形式能够全面详细的解释本次教学内容,并能充分发挥教师的引导作用。

  (2)提问的形式

  这一形式能够在教学过程中起到刺激课堂,引起学习者注意的作用,并且是对学习者某一知识学习情况的抽样调查,由教师找出学习者存在的问题进行解决。

  (3)师生共同解答的形式

  采用这个形式能够在师生之间产生共鸣,提起课堂气氛,产生共鸣,引起注意,使大部分学习者都参与进来,也是一个小型头脑风暴过程,在学习者之间互相影响,从而对知识得到正确理解。

  4、教学方法的选择

  本次课程选择运用了讲授法、演示法、练习法的教学方法。

  (1)语言的方法—讲授法,主要是根据教学目标和教学任务,数学这门学科的解释性强的特点以及这个学习阶段的学习者的自学能力不够然而接受能力很强的特点而选择的。

  (2)直观的方法—演示法,顺应时代的发展,教学中出现了利用新媒体的需要,并且,对于这个阶段的学习者,在课程开展中利用PPT来进行演示可以更加有效的刺激学习者感官,并且配合适当的板书,对于这个年龄段的学习者更加容易接受,同时也由于我们已经具备了采用新媒体的条件。在课后,会以电子杂志的形式形成重点复习资料留给学习者课后复习。

  (3)实践的方法—练习法,包括了口头练习和书面练习。口头练习是这个年龄段学习者心理特征的需要,因为他们独立性还不够强,在进行口头练习的时候,比较能够跟上大多数人的思维,产生共鸣。书面练习是这个学科特征的需要,必须进行书面练习才能让同学们更好的掌握所学知识,随堂练习能及时反映出当场学习的状况。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号