当前位置:首页 > 教案教学设计 > 数学教案

幂的乘方与积的乘方教学设计

日期:2021-12-24

这是幂的乘方与积的乘方教学设计,是优秀的数学教案文章,供老师家长们参考学习。

幂的乘方与积的乘方教学设计

幂的乘方与积的乘方教学设计第 1 篇

  【教学目标】

  知识目标:经历探索积的乘方的运算发展推理能力和有条理的表达能力。学习积的乘方的运算法则,提高解决问题的能力。进一步体会幂的意义。理解积的乘方运算法则,能解决一些实际问题。

  能力目标:能结合以往知识探究新知,熟练掌握积的乘方的运算法则。

  情感目标:提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心。

  【教学重点】

  会用积的`乘方性质进行计算

  【教学难点】

  灵活应用公式。

  【课前准备】

  自学课本P143-144

  【教学课时】

  1课时

  【教学过程】

  一、课前阅读。

  自已阅读课本P143-144,尝试完成下列问题:

  (1)(2a)3;

  (2)(-5b)3;

  (3)(xy)2;

  (4)(-2x3)4

  二、新课学习。

  (一)引入:填空,看看运算过程用到哪些运算律?运算结果有什么规律?

  (1)(ab)2=(ab)÷(ab)=(a÷a)÷(b÷b)=a()b();

  (2)(ab)3_______=_______=a()b()。

  (3)(ab)n=______=_______=a()b()

  (二)阅读效果交流。

  1、运用乘方的意义进行运算。

  【教师点拨】关于第(2)、(3)运算,底数是ab,把它看成一个整体进行运算。用乘法交换律和结合律最后用同底数幂的乘法进行运算。

  2、在观察运算规律的时候,从底数和指数两方面考虑。

  【学生总结】我们可以得到的规律是:

  符号表示:一般地,我们有(ab)n=anbn(n为正整数)

  语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

  (三)阅读中学习。

  1、例1、(1)(-5bc)3;(2)(xy2)2;(3)(-2xy3)4.

  阅读后分析:本题是否是公式的直接应用?能否沿用公式的形式?

  阅读后讲解:注意系数也要乘方,注意符号。公式拓展:(abc)n=anbncn

  【教师点拨】在初学阶段,按照公式逐步运算。可与课前阅读题目相比较,考察题目间的联系和区别,运算的时候要注意符号。

  2、例2、2(x3)2÷x3-(3x3)3+(5x)2÷x7

  ①阅读后分析:从形式上看,是公式的扩展,包含了多种公式的应用。并包含了多种运算。

  ②阅读后讲解:学会举一反三用联系的观点看问题。运算顺序要遵循先算乘方,后算乘除,最后算加减。

  解:原式=2x6÷x3-27x9+25x2÷x7

  =2x9-27x9+25x9=0

  ③阅读后反思:A、形式上包含积的乘方,也用到同底数幂的乘法。

  B、“积”的形式,可以是几个多项式相乘。

  C、用到整体思想。

  【教师点拨】公式的拓展应用,上述例题易错点有系数忘记乘方、负数的乘方所得结果的符号。运算时注意运算顺序。

  3、对应练习

  (-2x3)3÷(x2)2+x13

  ①阅读后分析:本题既有用到积的乘方,又考察了同底数幂的乘法。按照运算法则运算即可,注意系数和符号。

  ②阅读后讲解:一般的运算顺序是先算乘除后算加减,有乘方的先算乘方。

  ③阅读后反思:本题是公式的灵活应用,要求同学首先知道运算顺序,其次选对公式。

  【教师点拨】运算要认真仔细、熟记运算法则。

  三、课堂拓展练习。

  1、阅读下列材料,完成后面练习

  an÷bn=(ab)n(n为正整数)

  an÷bn=──幂的意义

  =──乘法交换律、结合律

  =(ab)n──乘方的意义

  【教师点拨】积的乘方法则可以进行逆运算。即an÷bn=(ab)n(n为正整数)。

  2、对应练习:

  例1、(0.125)7×88

  阅读后分析:仿照阅读材料,可做适当变形逆用公式。

  阅读后解答:

  解:原式=(0.125)7×87×8

  =(0.125×8)7×8

  =1×8

  =8

  对应练习(0.25)8×4102m×4m×()m

  【教师点拨】活用公式、逆用公式是本章的一个重点。

  例2、已知2m=3,2n=5,求23m+2n的值。

  阅读后分析:按照公式的逆用,求23m+2n的值,由已知条件不能求出m,n的值,因此可以想到将2m,2n整体代入,这就需要逆用同底数幂乘法的运算性质和幂的乘方的运算性质。

  阅读后讲解:学生黑板演示,学生纠错。

  2、综合题

  探讨如何简便运算:(0.04)20xx×[(-5)20xx]2

  解法一:(0.04)20xx×[(-5)20xx]2解法二:(0.04)20xx×[(-5)20xx]2

  =(0.22)20xx×54008=(0.04)20xx×[(-5)2]20xx

  =(0.2)4008×54008=(0.04)20xx×(25)20xx

  =(0.2×5)4008=(0.04×25)20xx

  =14008=12004

  =1=1

  【教师点拨】逆用积的乘方法则anbn=(ab)n可以化简一些复杂的计算。

  【解题后反思】:这些练习用到了哪些知识点,体现了哪些数学思想和方法?

  四、学习后小结。

  重新浏览教材,说一说你有什么收获。

  学生总结,教师强调三点:

  1、积的乘方法则:积的乘方等于每一个因式乘方的积。即(ab)n=an÷bn(n为正整数)。

  2、三个或三个以上的因式的积的乘方也具有这一性质。如(abc)n=an÷bn÷cn(n为正整数)。

  3、积的乘方法则也可以逆用。即an÷bn=(ab)n,an÷bn÷cn=(abc)n,(n为正整数)。

  【教师点拨】

  1、总结积的乘方法则,理解它的真正含义。

  2、幂的三条运算法则的综合运用

  五、课后作业。

  详见配套练习

幂的乘方与积的乘方教学设计第 2 篇

教学 目

  标

(一)教学知识点

1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义.

2.理解积的乘方运算法则,能解决一些实际问题.

(二)能力训练要求

1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力.

2.学习积的乘方的运算法则,提高解决问题的能力.

(三)情感与价值观要求

在发展推理能力和有条理的语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美.

重 点

积的乘方运算法则及其应用.

难 点

幂的运算法则的灵活运用.

教具准备

投影片

施教时间

2007年 月 日

教学过程

Ⅰ.提出问题,创设情境

[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?

[生]它的体积应是V=(1.1×103)3cm3.

[师]这个结果是幂的乘方形式吗?

[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.

[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒.

Ⅱ.导入新课

老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.

出示投影片

学生探究的经过:

1.(1)(ab)2 =(ab)·(ab)= (a·a)·(b·b)= a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2)、(3)题.

(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;

(3)(ab)n==·=anbn

2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.

用符号语言叙述便是:

(ab)n=an·bn(n是正整数)

3.正方体的体积V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:

V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3)

通过上述探究,我们可以发现积的乘方的运算法则:

(ab)n=an·bn(n为正整数)

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

4.积的乘方法则可以进行逆运算.即:

an·bn

幂的乘方与积的乘方教学设计第 3 篇

教学目标 1.理解积的乘方的意义,学会运用积的乘方法则进行计算。 2.通过法则的推导过程提升分析问题、解决问题的能力. 3.经历从特殊到一般研究问题的过程,激发学习数学的兴趣,培养实事求是、严谨、认真、务实的学习态度.渗透数学公式的结构美、和谐美. 教学重点: 掌握积的乘方法则;正确区分积的乘方、幂的乘方和同底数幂相乘等多种运算. 教学难点: 用数学语言概括运算性质. 教学方法:引导发现探究、讲和练相结合. 教学流程设计: 提出一个需要用积的乘方法则来方便解决的问题。这样,就给学生设置了疑难 通过具体实例1,让学生对“积的乘方”有一感性认识。 当学生们掌握住积的乘方法则之后,再回过头来解决本课开始提出的问题 教学过程设计 一、情景引入: 1、问题:你能心算出 吗?(引出课题]§9.9 积的乘方) 二、概念分析 1、实例1 已知一个立方体的棱长是2a,求这个立方体的体积。(请一位学生口述回答。) 解:体积= = = (根据乘方的意义)= (单项式的乘法法则) 答:立方体的体积是 。 由实例1得到等式 = 。 阐明:何为积的乘方?——从底数的运算关系入手——底数2a中,2与a的运算关系是乘法。 提问:由等式 = ,你能发现积的乘方的结果有什么特别之处? (2与a都进行了3次方。) 师:对。2与a的积进行3次方就等于2的3次方与a的3次方的积。 实例2 计算 ——推广到积里的因式是抽象的字母的情况。 解: = = 。 指明:字母可表示数、单项式或多项式。 2、继续推广到指数为n(n为正整数)时的情况,即推导积的乘方法则: = 。 如果n是正整数,那么 = = = 。 师:这个公式表明的就是积的乘方法则。 请一位学生用数学语言口述此公式: 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 3、研讨: 师:当3个或3个以上因式乘方时,是否也具有这一性质,即 = 。 生:有。师:对。而且推导过程是一样的。(推导省略) 师:这说明积里有3个因式时,积的乘方法则仍然成立。那么,积里有3个以上因式时法则也成立吗? 生:也成立。师:积的乘方法则对积里的因式的个数没有限制。 给出一反例来强调积的乘方法则中把积的每一个因式分别乘方: 对吗? 生:不对,因为3也要进行3次方。 三、例题讲解 【例1】计算:① ; ② ; ③ ; ④ ; 解:① = ; ② = ; ③ = = ; ④ = = ; 课本练习9.9 ex1;ex2 【例2】计算:(1) ; (2) ; (3) 分析:混合运算时,运算顺序如何? 生:先乘方,再乘除,最后算加减。对(2)题,说明对第一个因式进行符号变换,还是对第二个因式进行符号变换都是可行的。强调:①对于底数是负数、分数或单项式或多项式时,应给它添上括号;② 课本练习9.9 ex3;ex4; 解决:计算 ; 课本练习9.9 ex5 四、课堂小结: 1.这节课你学会了什么?(运用积的乘方法则进行计算) 2.运用积的乘方法则进行计算应注意些什么? (1、运用积的乘方法则时,先要弄清积是由哪些因式构成,然后每个因式再乘方,并注意公式可逆用;2、一个式子中包含多种运算时,应区别对待,运算顺序是先乘方再相乘;3、要注意积的乘方只适用于底数是积的形式,防止出现 的错误,当底数的积的形式中含有“-”号时,可将“-”号看成“- 1”作为一个因式,避免漏乘。) 五、作业:.课课练9.9; 教学设计及反思: 本节主要学习积的乘方,到现在为止,我们共学习了幂的三个运算性质.幂的三个运算性质是整式乘法的基础,也是整式乘法的主要依据,进行幂的`运算,关键是熟练掌握幂的三个运算性质,深刻理解每种运算的意义,避免互相混淆,有时逆用幂的三个运算性质,还可简化运算.通过学生自己概括总结,既培养了学生的参与意识,又训练了他们归纳及口头表达能力.通过教师有意识的引导,让学生在现有知识的基础上开动脑筋、积极思考,要充分调动学生的参与意识,训练学生运用已有知识去解决新问题的能力,同时,在学生“说”,教师“写”的过程中,教师可随时发现并及时纠正学生解题中出现的问题,如题中“-”号的处理,并强调解题程序以及幂的乘方性质的运用.学生已具备综合运用性质的能力,让学生尝试解题,目的是训练学生分析问题的能力.通过练习,此时学生已能运用幂的三种运算性质进行计算,但在计算过程中还会出现各种问题,所以在学生板演时,师生共同订正,可减少不必要的错误出现.这节课我们学习了积的乘方的运算性质,请同学们谈一下你对本节课学习的体会.课堂归纳总结由学生来说,可以使学生上课听讲精神集中,还可以训练学生归纳总结的能力。课堂节奏有点快,练习难了一点。今后将会不断改进。

幂的乘方与积的乘方教学设计第 4 篇

  一、教材分析

  《幂的乘方与积的乘方》选自义务教育课程标准实验教科书(北师版)七年级《数学》下册第七章《幂的乘方与积的乘方》,本节课在学习同底数幂的乘法以后,以学生喜爱的地理知识――几大行星体积大小的比较为切入点,利用“做一做”的游戏展开新课,让学生探索幂的乘方运算性质。充分体现新教材“问题情境―建立模型―解释、应用与拓展”的特点。以“观察―归纳―概括 ”为主要线索探索运算法则,注重发展推理能力和语言表达能 力。

  二、学情分析

  在九年义务教育阶段,学生从小学升中学无需考试,因此就出现了同一个班学生的基础有很大的差别。学生的基础不平衡,教学就有一定的难度。只有教学定位明确了,教学设计才能适合学生的学习需要。我们的学生已经经历对同底数幂乘法法则的探索,有了会进行同底数幂的乘法运算的经验,初步感受到数学源于生活,体会幂的意义,领悟数学与现实世界的联系,这些均为本节课的学习奠定了基础。根据学生的年龄特点和心理特征,本课采用了探索式学习方式,归纳、概括幂的乘方运算性质。

  三、教学目标

  1、知识技能:

  2、过程与方法:

  体会幂的意义,领悟数学与现实世界的联系,并发展实践能力;在探索过程中培养和发展学生学习数学的主动性,会运用幂的乘方的运算性质,且能用幂的意义加以说明。

  3、情感与态度:

  通过问题情境的创设,激发学生学习的积极参与数学学习活动,培养学生积极探索、勇于创新的精神。在学习中体会与他人合作的重要性,能从交流中获益。

  四、教学重点与难点

  1、重点:理解并正确运用幂的乘方的运算性质。

  2、难点:灵活运用幂的乘方的性质进行计算。

  五、教具准备

  多媒体、投影仪

  六、教学安排

  两课时,这节是第一课时

  七、教学设计

  (一)创设情境,导入新课[:学≈科≈网Z≈X≈X≈]

  电脑显示教科书P17引例(设计意图:激发兴趣,燃起学生的求知欲)

  如果甲球的半径是乙球的 倍,那么甲球的体积是乙球的 。

  老师提问:地 球、木星、太阳可以近似地看做是球体。地球、木 星、太 阳的半径分别是地球的倍和倍,它们的体积分别约是地球的多少倍?

  如何解决这个问题呢?

  学生活动:由题意可知木星的体积是地球体积的 倍,太阳的体积是地球体积的 倍。

  老师: 和 所表示的数学意义是什么?哪位同学能告诉我们。

  学生: 表示3个10相乘,即 10×10×10;表示3个相乘,即

  老师:在学生回答的基础上,谁能告诉我 等于多少?

  学生: 。你能说出每一步的理由吗?

  学生:第一步是幂的乘方的意义,第二步是同底数幂的乘法性质,第三步是加法的意义。

  师:这就说明: =(板书)对吗?

  (二)温故知新,探究幂的乘方法则

  师:我们再来看一看下面的练习题如何计算?(电脑显示教材P17“做一做”的内容)。

  做一做:(把学生分成四组,独立完成下列各题,然后小组交流、讨论)

  ①指导学生独立完成(1)—(4)小题,四名同学在板上做。[:ZXX]

  ②听取学生讨论,解决问题的方法和建议,并与个别学生适当交流 。

  ③关注学生获取答案的思路和方法。

  ④引导学生在讨论与交流的基础上总结结论,引出关于幂的乘方的法则。

  老师板书:

  根据上面的板书,同学们猜一猜 = ,在学生回答的基础上板书

  老师:观察以上三个等式,你发现什么规律,这个规律能用等式来表示吗?你能验证这一等式吗?

  .

  (三)强化新知,应用法则[:学#科#网Z#X#X#]

  学生:(1)在练习本上完成以上计算,并与同伴进行交流。

  (2)学生总结,(1)、(2)、(3)直接用幂的乘方的性质进行运算不能把幂的乘方与同底数幂的乘法混淆。第(4)题涉及到负号的乘方,计算时要注意“-”有没有参与乘方。第(5)题是幂的乘方与同底数幂的综合运算。第(6)题是利用幂的乘方运算后再合并同类项。

  八、随堂练习

  1.计算:(1) ; (2) ; (3) .

  (设计意图:让学生分组比赛,完成后交流)

  九、课堂小结

  老师:这节课你们有什么收获和体会?(设计意图:体现学生的 主体性)

  学生:我们学了幂的`乘方,这与前面学过的同底数幂的乘法是有所不同的,它们相同的是底数不变,不同的是,幂的乘方是指数相乘,同底数幂的乘法是指数相加。

  十、布置作业

  习题1.5 知识技能 1.(4)、(5)、(6)

  2.(3)、(4)

  十一、板书设计

  投影幕

  板演

  1.2 幂的乘方与积的乘方

  相关概念

  十二、教学设计分析

  本节课的设计意图是让学生在探索幂的乘方的法则的过程中,经历了由“特殊”到“一般”的过程,培养了学生思维的严密性,也让学生感受了数学学习的严谨性,积累了解决问题的经验和方法。在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展。从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养。在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标。但学生学习的问题、活动较多,注意把握课堂时间。

  总之,这节课的设计是为了在整个教学过程中,能让学生主动探索、认 识数学、解决问题以及合作交流和创新意识的精神。让学生积极参与到学习活动中,能充分体现学生的主体地位

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号