当前位置:首页 > 教案教学设计 > 数学教案

与三角形有关的线段背景分析

日期:2021-12-20

这是与三角形有关的线段背景分析,是优秀的数学教案文章,供老师家长们参考学习。

与三角形有关的线段背景分析

与三角形有关的线段背景分析第 1 篇

  一、内容和内容解析

  1.内容

  三角形中相关元素的概念、按边分类及三角形的三边关系.

  2.内容解析

  三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

  本节课的教学重点:三角形中的相关概念和三角形三边关系.

  本节课的教学难点:三角形的三边关系.

  二、目标和目标解析

  1.教学目标

  (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

  (2)理解并且灵活应用三角形三边关系.

  2.教学目标解析

  (1)结合具体图形,识三角形的概念及其基本元素.

  (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

  (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

  三、教学问题诊断分析

  在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的'精神.

  四、教学过程设计

  1.创设情境,提出问题

  问题1 回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

  师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

  设计意图:三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

  2.抽象概括,形成概念

  动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

  师生活动:

  三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  设计意图:让学生体会由抽象到具体的过程,培养学生的语言表述能力.

  补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

  师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

  设计意图:进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

  3.概念辨析,应用巩固

  如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

  (1)以AB为一边的三角形有哪些?

  (2)以∠D为一个内角的三角形有哪些?

  (3)以E为一个顶点的三角形有哪些?

  (4)说出ΔBCD的三个角.

  师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

  4.拓广延申,探究分类

  我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

  师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

  三角形按边分类:

  设计意图:通过这一活动的设计,提高学生分类讨论和归纳概括的能力,加深学生对三角形按边分类的理解.

  5.联系实际,突破难点

  情境引入:如图三角形中,假设有一只小虫要从点B出发沿着三角形的边爬到点C,它有几条路线可选择?

  各条路线的长一样吗?

  师生活动:引导学生讨论分析,得到两条路线:

  (1)B直接到C即BC;

  (2)先由B到A再到C即BA+AC.

  显然,路线(1)中的BC要短一些,即:BC

  最后,师生共同得到:

  BC

  即:三角形的两边之和大于第三边.

  设计意图:根据“两点之间线段最短”这一几何公理,推理出三角形任意两边之和大于第三边,让学生亲历知识的形成过程,同时加深对 “三角形两边之和大于第三边”的理解.

  6. 应用巩固

  例 用一条长为18c的细绳围成一个等腰三角形.

  (1)如果腰长是底边的2倍,那么各边的长是多少?

  (2)能围成有一边的长是4c的等腰三角形吗?为什么?

  解:(1)设底边长为xc,则腰长为2xc.

  x+2x+2x=18.

  解得x=3.6.

  所以,三边长分别为3.6c,7.2c,7.2c.

  (2)因为长为4的边可能是腰,也可能是底边,所以需要分情况讨论.

  如果4c长的边为底边,设腰长为xc,

  则 4+2x=18

  解得x=7.

  如果4c长的边为腰,设底边长为xc,

  则 2×4+x=18

  解得x=10.

  因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4的等腰三角形.

  由以上讨论可知,可以围成底边长是4c的等腰三角形.

  引导学生通过解决这样的应用问题,特别是(2)中思想方法,让学生学会什么情况下要用到分类讨论的思想,并通过问题的解答过程加深对三角形三边关系理解.

  设计意图:设计有一定综合性的题目,考查学生的灵活运用知识的能力,培养学生分类讨论的数学思想,还能突破难点加深学生对三角形三边关系的理解,一举多得.

  补充说明:应用三角形的三边关系时要灵活应变,最简洁的方法只需判断两小边之和大于最大边即可组成三角形.

  师生活动:结合具体图形,教师引导学生分析,活学活用.

  7.总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

  (1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.

  (2)三角形按边的分类.

  (3)三角形三边之间的关系.

  师生活动:教师引导,学生小结.

  设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.

  8.布置作业:

  教科书第8页第1,2题.

与三角形有关的线段背景分析第 2 篇

  一、内容和内容解析

  1.内容

  三角形中相关元素的概念、按边分类及三角形的三边关系.

  2.内容解析

  三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

  本节课的教学重点:三角形中的相关概念和三角形三边关系.

  本节课的教学难点:三角形的三边关系.

  二、目标和目标解析

  1.教学目标

  (1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

  (2)理解并且灵活应用三角形三边关系.

  2.教学目标解析

  (1)结合具体图形,识三角形的概念及其基本元素.

  (2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

  (3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

  三、教学问题诊断分析

  在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的'精神.

  四、教学过程设计

  1.创设情境,提出问题

  问题1 回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

  师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

  设计意图:三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

  2.抽象概括,形成概念

  动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

  师生活动:

  三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

  设计意图:让学生体会由抽象到具体的过程,培养学生的语言表述能力.

  补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

  师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

  设计意图:进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

  3.概念辨析,应用巩固

  如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

  (1)以AB为一边的三角形有哪些?

  (2)以∠D为一个内角的三角形有哪些?

  (3)以E为一个顶点的三角形有哪些?

  (4)说出ΔBCD的三个角.

  师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

  4.拓广延申,探究分类

  我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

  师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

  三角形按边分类:

  设计意图:通过这一活动的设计,提高学生分类讨论和归纳概括的能力,加深学生对三角形按边分类的理解.

  5.联系实际,突破难点

  情境引入:如图三角形中,假设有一只小虫要从点B出发沿着三角形的边爬到点C,它有几条路线可选择?

  各条路线的长一样吗?

  师生活动:引导学生讨论分析,得到两条路线:

  (1)B直接到C即BC;

  (2)先由B到A再到C即BA+AC.

  显然,路线(1)中的BC要短一些,即:BC

  最后,师生共同得到:

  BC

  即:三角形的两边之和大于第三边.

  设计意图:根据“两点之间线段最短”这一几何公理,推理出三角形任意两边之和大于第三边,让学生亲历知识的形成过程,同时加深对 “三角形两边之和大于第三边”的理解.

  6. 应用巩固

  例 用一条长为18c的细绳围成一个等腰三角形.

  (1)如果腰长是底边的2倍,那么各边的长是多少?

  (2)能围成有一边的长是4c的等腰三角形吗?为什么?

  解:(1)设底边长为xc,则腰长为2xc.

  x+2x+2x=18.

  解得x=3.6.

  所以,三边长分别为3.6c,7.2c,7.2c.

  (2)因为长为4的边可能是腰,也可能是底边,所以需要分情况讨论.

  如果4c长的边为底边,设腰长为xc,

  则 4+2x=18

  解得x=7.

  如果4c长的边为腰,设底边长为xc,

  则 2×4+x=18

  解得x=10.

  因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4的等腰三角形.

  由以上讨论可知,可以围成底边长是4c的等腰三角形.

  引导学生通过解决这样的应用问题,特别是(2)中思想方法,让学生学会什么情况下要用到分类讨论的思想,并通过问题的解答过程加深对三角形三边关系理解.

  设计意图:设计有一定综合性的题目,考查学生的灵活运用知识的能力,培养学生分类讨论的数学思想,还能突破难点加深学生对三角形三边关系的理解,一举多得.

  补充说明:应用三角形的三边关系时要灵活应变,最简洁的方法只需判断两小边之和大于最大边即可组成三角形.

  师生活动:结合具体图形,教师引导学生分析,活学活用.

  7.总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

  (1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.

  (2)三角形按边的分类.

  (3)三角形三边之间的关系.

  师生活动:教师引导,学生小结.

  设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.

  8.布置作业:

  教科书第8页第1,2题.

与三角形有关的线段背景分析第 3 篇

教学目标:

知识与技能:结合三角形的实例,探索、掌握三角形3条边之间的关系.

会用符号表示三角形,了解按边关系对三角形进行分类.

理解三角形三边之间的不等关系,并会初步应用它们来解决问题.

过程与方法:结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边关系。

情感、态度和价值观:通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力

重 点:三角形的三边之间的不等关系.

难 点:应用三角形的三边之间的不等关系判断3条线段能否组成三角形.

教学过程:

一、问题情境:

三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?对于三角形,你了解了哪些方面的知识?你能画一个三角形吗?

二、新课学习:

⒈三角形的相关概念.

⑴什么是三角形:

如图⑴,由不在同一条直线上的三条线段首尾顺次相接

所组成的图形叫做三角形 .

⑵三角形的有关概念:

①边:组成三角形的三条线段 叫做三角形的三条边.

②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角 .

③顶点:三角形相邻两边的公共端点叫做三角形的顶点.

⑶三角形的表示:

如图⑴以A、B、C为顶点的三角形记作“⊿ABC ”,读作“三角形ABC”.

⑷三角形的分类:如图⑵

①等边三角形:图⑵中⑴的⊿ABC的边

AB=BC=AC,⊿ABC是等边 三角形.

即:三条边都相等的三角形叫做等边三角形.

②等腰三角形:图⑵中⑵的⊿ABC的边

AB=AC,但AB≠BC, AC≠BC,⊿ABC是等腰 三角形.

即:有两条边相等 的三角形叫做等腰三角形.等腰三角形中,相等的边 叫做腰,另一边 叫做底,两腰 的夹角叫做顶角,腰 和底 的夹角叫做底角.

注意:等边三角形是特殊 的等腰三角形,即腰 和底 相等的等腰三角形.

③不等边三角形:图⑵中⑶的⊿ABC的边AB≠AC≠BC≠AB,⊿ABC是不等边三角形.

即:三条边都不相等 的三角形叫做不等边三角形.

综上三角形按边分类关系如下

三条边都不相等的三角形: .

三角形 腰和底不相等的: .

有两条边相等的三角形

腰和底相等的: .

⑸练习:教材P65练习 “1”(口答)

⑹讨论与交流: 如图⑶,存在AB1,AB2,AB3,···AB9,

AB10,10条线段,且B1,B2, ···B10在同一条直线上,

则,图中三角形共有45 个.

⒉三角形三边关系: 阅读教材P64“探究”完成下列问题:

⑴如图⑷,根据线段公里“两点之间线段最短”可得,⊿ABC的三边

满足下列关系:AB +BC >AC ;AB +AC >BC ;BC +AC >AB .

或:c +a >b ; c +b >a ; a +b >c .

即:三角形任意两边的和 大于第三边 .

上述关系也可表示为:

a -b

即:三角形任意两边的差 小于第三边 .

注意:综合上可知:三角形任意一边小于 其他两边的和,并且大于 其他两边的差.

⑵练习:教材P65练习“2” (口答)

说明:应用三角形三边之间的关系判定三条线段能否构成三角形时,常常只要两条较短的线段长度之和大于第三条线段的长度即可.

⑶例解与应用:阅读教材P64例,解答下列问题:

一个等腰三角形的周长为28cm.

①已知腰长是底边长的3倍,求各边的长;

②已知其中一边的长为6cm,求其它两边的长.

解:①设底边长为x cm ,则腰长为3x cm,根据题意得x+3x+3x=28

解得 x=4.

所以 3x=3×4=12.即:等腰三角形的三边长分别为4 cm,12 cm,12 cm .

②若腰长为6cm ,则底边长为28-2×6=16cm ,此时6+6<16,故不能组成三角形,所以腰长不能为6.

若底边长为6cm,则腰长为﹙28-6﹚÷2=11cm ,它能构成三角形.

所以它的其它边长为11cm、11cm .

⑷讨论与交流:

①如果三条线段的比是①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥3∶4∶5.其中能构成三角形的有 2 个.

②若a,b,c分别是三角形的三边,化简︱a-b-c︱+︱b-c-a︱+︱c-a+b︱= .

③已知一个等腰三角形的两边长分别为5cm和9cm,那么这个三角形的周长为19cm或23cm. .

三、课堂小结:

四、课堂检测:

1.如图⑸,共有 个三角形,

其中以AC为边的三角形有 个.

2.一个等腰三角形的两边分别为7cm和10cm,则它的周长

为 .

3.一个等腰三角形的两边分别为2cm和5cm;则它的周长为 .

4.一个三角形的周长为15cm,且其中两边都等于第三边的2倍,,那么这个三角形的最短边长为 .

5.已知一个三角形的两边长分别为5cm和9cm,那么这个三角形的第三边x的取值范围

六、课后作业

⒈书面作业:

⑴课本P69习题7.1“1”(做书上)

⑵课本P69习题7.1“2”(做书上)

⑶等腰三角形底边为4.腰长为b,则b一定满足( )

A.b>2 B. 2

⑷已知三条线段的比是:①2∶3∶4;②1∶2∶3;③2∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥6∶8∶10.其中可构成三角形的有 ( )

A. 1个 B. 2个 C. 3个 D. 4个

⑸已知三角形的三边长为连续的整数,且周长为12cm,则它的最短边长为 ( )

A. 2cm B. 3cm C. 4cm D. 5cm

⑹已知a,b,c为三角形的三边,则︱a+b―c︱-︱b-c-a︱的化简结果是( )

A.2a B. -2b C.2a+2b D.2b-2c

⑺已知等腰三角形的两边长分别为4cm和6cm,且它的周长大于14cm,则第三边长为

⑻已知等腰三角形的两边长分别为4,9,求它的周长.

⒉跟踪训练:

⑴如图⑹所示,为估计池塘岸边A、B的距离,小方在池塘

的一侧选取一点O,测得OA=15cm,OB=10cm,A、B间的

距离不可能是( )

A.20cm B.15cm C.10cm D.5cm

⑵下列说法①等边三角形是等腰三角形;

②三角形任意两边的和大于第三边;

③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;

④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个

⑶已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )

A.13cm B.6cm C.5cm D.4cm

⑷三角形的一边长为5,一边长为13,则第三边x的取值范围是( )

A. 58 D. x<18

⑸已知三角形三边的比是3∶4∶5,其周长为48cm,那么它的三边长为 .

⑹三角形有两边长为5和1,第三边为奇数,则此三角形的周长为 .

⑺已知周长小于13的三角形三边长都是质数,且其中一条边a长为3,求符合条件的三角形的个数.

⑻一个等腰三角形的一条边长为6,另两边长是不小于3且不大于13的奇数,求这个等腰三角形的周长.

与三角形有关的线段背景分析第 4 篇

  一、三角形的有关概念

  1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

  三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

  2.三角形中的三条重要线段:角平分线、中线、高

  (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的'中线。

  (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  说明:①三角形的角平分线、中线、高都是线段;

  ②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

  二、三角形的边和角

  三边关系:三角形中任意两边之和大于第三边。

  由三边关系可以推出:三角形任意两边之差小于第三边。

  三、三角形内、外角的关系

  1.三角形的内角和等于180°。

  2.直角三角形的两个锐角互余。

  3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

  4.三角形的外角和为360°。

  四、等腰三角形与直角三角形:

  1.等腰三角形:有两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰,三条边都相等的三角形叫做等边三角形(或正三角形)。

  说明:等边三角形是等腰三角形的特殊情况。

  2.直角三角形:有一个角是直角的三角形是直角三角形,它的两个锐角互余。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号