当前位置:首页 > 教案教学设计 > 数学教案

三角形内角和导入设计

日期:2021-12-18

这是三角形内角和导入设计,是优秀的数学教案文章,供老师家长们参考学习。

三角形内角和导入设计

三角形内角和导入设计第 1 篇

  教学目标:

  1.能说出三角形的内角和的含义,会复述“三角形的内角和是180°”这个结论,能初步运用这个结论进行简单的计算。

  2.经历探索与验证“三角形内角和等于180°”的过程,能用至少一种方法解释“三角形的内角和是180°”这个结论,养成动手操作探究的习惯,发展分析、归纳和推理能力。

  3.在“预习、探究、归纳”等的学习活动中,逐步培养学生务实求真的探究精神,培养乐于自主学习和乐于与人合作分享的习惯。

  教学设计:

  一、谈话导入

  1.介绍内角、内角和

  ①结合预习,请同学介绍什么是三角形的内角、内角和?

  ②三角形的内角和是多少度?

  【设计意图:预设通过课前的文本阅读,学生完全有能力自己达成这一目标,用最段的时间由学生自己带过去,达到检测的目的】

  二、引导探究

  1.动手操作实践。

  ①请同学们先在小组内交流各自的验证过程。

  【设计意图:通过课前预习,预设学生已学会用剪、拼验证三角形内角和的方法。但每位学生预习的情况可能存在差异,课堂上安排学生先在小组内交流,给每一位学生提供了展示思维过程的机会。通过小组内的交流,学生把自己的想法表达出来,又一次加深了对验证过程的理解认识,同时通过相互交流,完善、修正了自己的认识。】

  ②哪个小组的同学最想上来展示一下你们的研究成果?

  【设计意图:为了满足学生的探究欲望,发挥学生的主观能动性,我在设计学具的时候,想了几个不同的方案,最后确定课前让学生自己制作各种不同的三角形,加深对各类三角形特征的印象,课上就让学生用自己制作的三角形,通过独立探究和组内交流,实现对多种方法的体验和感悟。】

  预设:(课件配合演示)

  测量的方法:三角形的内角和在约是180°。

  剪拼、折叠的方法:转化成平角,实验验证三角形的内角和180°。

  切分法:转化成2个直角三角形,推理论证三角形的内角和180°。

  【设计意图:在前面有效铺垫的基础上,通过这个环节对猜想进行科学论证,使学生经历了一个科学、完整的探究发现过程,一方面锻炼了学生的思维,另一方面使学生接受了一次科学方法论的教育,同时有利于中小学数学教育的衔接和小学生的可持续发展。】

  2.进一步感受三角形内角和与形状、大小的关系。

  【设计意图:通过变化的三角形和三个内角的数据显示,使感受三角形的内角和与三角形的形状、大小的关系,使学生感受到极限的思维方法。】

  三、反馈练习

  1. 85页做一做及88页第9和第10题。

  2.想一想:

  ①等腰三角形一定是锐角三角形,对吗?

  ②等腰三角形中一个内角度数是30度,另外两个内角的度数分别是多少?

  ③解决生活中的问题。

  四、质疑问难

  1、同学们还有什么问题?(师生互动交流并解决能现场解决的问题)

  【预设:学习三角形的内角和能解决生活中的那些问题?是谁发现这个定律的?其他多边形有没内角和,要怎么求?三角形有内角,那它有没有外角,外角又会有什么规律呢……】

  2、介绍帕斯卡。

  五、梳理总结

  1、回顾是怎样得出这个结论的?

  2、交流收获。

  3、简单介绍欧氏几何、罗氏几何、黎曼几何的区别,

  【设计意图:欧氏、罗氏、黎氏三种几何学对同一问题的不同回答,是建立在各自领域的基础上的',都是正确的,离开了它们各自存在的基础、范围和条件,就会出现另外的情况,所以它们又具有相对性。教学中通过最简单的“水”为载体,深入简出的渗透任何真理都具有两重属性的辩证唯物主义认识论,避免给今后的中学、大学学习带来困扰,为今后的后续学习奠定方法论基础。】

  设计思路:

  新课程非常强调“问题”的重要性。英国诺丁汉大学校长杨福家校长曾说:“如果一个学生能够懂得去发现问题,懂得怎样去掌握知识,就等于给了他一把钥匙,就能去打开各式各样的大门。”基于以上的认识,在《三角形内角和》一课教学中,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生的问题意识,收到了很好的效果。

  一、预习质疑,让文本成为提问的发源地。传统的数学课堂, 我们不习惯学生预习甚至反对学生预习,生怕学生预习了,什么都知道了,什么问题都没有了,我们就无法按照自己预定的教学思路进行。事实恰恰相反,学生通过预习不仅可以自行解决一些简单的问题,而且让学生预习后,学生不是没有问题,而是问题更多了。比如在教学《三角形内角和》时,学生通过预习,对所学内容有所了解,带着困惑和问题在课堂上有针对性地听课。用自己预习得来的知识与同学老师交流讨论,在相互讨论与争辩中不同思维相互碰撞,在倾听中体会不同的思维方式,博取众长,从而获取真知灼见。同时,课前预习使教师在审阅学生的预习作业后发现典型的问题,教学时有针对性地教学,节省教师不必要的讲授时间,给学生更充分的探讨时间探究富有思考价值和挑战性的问题,这样,课堂教学也就达到减负增效的效应。

  二、带疑听课,让疑成为启思的载体。亚里思多德说“思维是从疑问的惊奇开始的。”有了问题,就有了探究的欲望和要求,获取知识成为学生有意义的一件事。笔者发现有不少学生在操作测量时产生了困惑,结果并非他们所想的那样正好是180度。而对于其中的原因他们也不作深层次的思考。于是,一些学生开始想办法“解决”这个矛盾,调整测量结果,“凑”出180度,还有些同学干脆“隐藏”起来,等待、观望。可见,他们对于实验结果缺乏正确的认识和态度。作为教者,我们如何“直面”问题,培养学生严谨、求实的探究精神是本节课的一个重要目标。

  三、实验探究,让课堂成为释疑的好阵地。学生间的差异是客观存在的。有人说,探究性学习更适合于前三分之一的学生群体,对于三分之二的学生,特别是后三分之一的学生来说,没有实质性的作用。那么摆在我们面前的问题就是如何在探究性学习过程中照顾这部分学生,让他们也能从中收益。在本节课的教学中,如果把操作检验部分拿掉,也能得出结论,不影响研究的完整性。从科学的角度去分析,确实没有问题。然而从学生的角度出发,这样做的潜在后果就是对后部分学生的遗弃。因为对于他们来说,更需要形象的支撑,需要依赖动手实践。换个角度思考,“操作”本身就是科学探究的一部分,“测量”是实验的基本方法,让学生经历“量”和“拼”的过程有利于培养动手实践的习惯与科学研究的精神,同时加深体验,有效落实知识目标。同时,在学生与学生间、学生与教材间、学生与教师间、学生与媒体间的广泛交流沟通中,学生对问题产生了深层次的反思与感悟。更重要的是,学生在预习中已基本掌握撕拼、折叠等操作过程和方法,这样就为学生课堂的动手操作、合作交流以及最后的论证推理提供了充分的时间和空间,。

  四、解疑释疑,让旧疑成为新疑的起点。学贵在有疑,解决问题的过程也是不断生成问题的过程。本作为浓缩大量前人知识和经验精华的载体,正是构成学生学会探究和创造的载体。因此,在本课教学中,让学生先交流课前疑问,再提出新的疑问,教师有意识地进行预设和归类整理,并在课堂上留出足够的时间,引导学生讨论各种有价值的问题,对促进学生学习方式的转变,具有非常重要的意义。

三角形内角和导入设计第 2 篇

  教学目标:

  1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。

  2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。

  3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。

  教学重、难点:

  掌握三角形的内角和是180°。验证三角形的内角和是180°。

  学生分析:

  在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  教学流程:

  一、创设情境,激发兴趣

  (课件出示:两个三角形争论,大的对小的说,我的内角和比你大。)

  (学生小声议论着,争论着。)

  师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?

  生:可以把这两个三角形的内角比一比。

  生:它们不是一个角在比较,可怎么比呀?

  生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。

  师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)

  【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】

  二、动手操作,探索新知

  1、初步感知。

  师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)

  生汇报测量的结果:内角和约等于180°。

  师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)

  【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】

  2、用拼角法验证。

  师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?

  生:我们手里有一些三角形,可以动手拼一拼。

  生:还可以剪一剪。

  师:那同学们就开始吧!

  (学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)

  生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。

  生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。

  生:钝角三角形的内角和也是180°。

  (师板书:三角形的内角和是180°。)

  【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】

  三、巩固新知,拓展应用

  1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。

  2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。

  通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。

  3.师:(出示一个大三角形)它的内角和是多少度?

  生:180 °。

  师:(出示一个很小的三角形)它的内角和是多少度?

  生:180 °。

  师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)

  师:哪个对?为什么?

  生:180°对,因为它还是一个三角形。

  师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)

  生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

  生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

  师:你真聪明。(课件演示。)

  四、小结

  师:同学们,你们今天学了“三角形的内角和是180°”的`新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)

  师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?

  五、探究性作业

  求下面几个多边形的内角和。(图形略。)

  【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】

  反思:

  1、重视动手操作,让学生在探究中收获知识。《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养空间观念和动手操作能力。

  2、小组合作学习是新课程倡导的学习方式,有利于培养学生的合作意识、探索能力、团队精神。我们要从平时抓起,在平常的课堂中开展小组合作学习,可以是前后四人为一组,深入探究合作学习的方法和途径。这样学生学习方式的转变才能落到实处,才不会变成某些公开课的摆设

三角形内角和导入设计第 3 篇

尊敬的各位评委老师:

  大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

  一、教材分析

  “三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

  二、教学目标

  1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

  2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

  3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

  三、教学重难点

  教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

  教学难点:采用多种途径验证三角形的内角和是180°。

  四、学情分析

  通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

  五、教学法分析

  本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

  六、课前准备

  1、教师准备:多媒体课件、三角形教具。

  2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

  七、教学过程

  (一)、创设情境,激趣导入

  导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

  课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

  (二)、自主探究、合作交流

  1、探索特殊三角形内角和

  拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

  三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

  90°+45°+45°=180°

  从刚才两个三角形内角和的计算中,你发现了什么?

  2、探索一般三角形的内角和

  一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

  3、汇报交流

  请小组代表汇报方法。

  1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

  没有统一的结果,有没有其他方法?

  2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

  3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

  4)教师课件验证结果。

  请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

  学生回答后教师板书:三角形的内角和是180°

  为什么有的小组用测量的方法不能得到180°?(误差)

  4、验证深化

  质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

  谁能说一说不能画出有两个直角的三角形的原因?

  (三)、应用规律,解决问题:

  揭示规律后,学生要掌握知识,就要通过解答实际问题。

  1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

  第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

  第二关,提高练习,

  ①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

  让学生灵活应用隐含条件来解决问题,进一步提高能力。

  2、小组合作练习,完成相应做一做。

  (四)、课堂总结,效果检测。

  一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

  (五)作业课下继续探究三角形,看你有什么新发现。

  八、板书设计

  通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

三角形内角和导入设计第 4 篇

  教学目标:

  1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180度,能运用这一规律解决一些简单的问题。

  2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力、数学思考能力及数学推理能力。

  3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。

  教学准备:多媒体课件,任意三角形,剪刀,纸,三角板,量角器等。

  教学过程:

  一、 练习旧知,导入新课:

  我们已经学习了三角形的分类,你知道三角形按角分可以分为哪几类吗?

  教师(出示一副三角尺)这是一副三角尺,它们都是什么形状?每块三角尺的三个角分别是多少度?

  结合三角尺认识内角,这两个三角形三个内角的和分别是多少度?

  师:一个三角形中三个内角的和称为三角形的内角和。今天我们就来研究三角形的内角和。(板书课题)

  二、 提出问题,猜想验证

  1. 猜想。

  请同学拿出两块同样的三角尺,把这两块同样的三角尺拼成一个大的三角形,看一看拼成的三角形的内角和是多少度?

  学生活动后,反馈:你拼成的三角形是什么样子的?它的内角和是多少度?

  从这一现象中,你能猜想一下,三角形的内角和可能存在的规律吗?

  “三角形的内角和等于180°”

  你能说清楚三角形的内角和等于180°的理由吗?(没有人举手)是的,由猜想得出的结论往往是不可靠的,需要我们进一步去验证。

  2. 验证。

  师:怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。

  学生分小组活动,教师参与学生的活动,并给予必要的指导。

  小组汇报,你们是怎样验证的?

  {可以量一量,折一折,剪一剪、拼一拼}

  3. 归纳。

  通过刚才的活动,我们得出了什么结论?

  刚才,我们是怎样得出“三角形内角和等于180°”这个结论的?

  “猜想—验证”是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。

  4. 教学“试一试”。

  师:知道了三角形的内角和等于180°,就可以运用它去解决一些问题。我们来“试一试”。(出示“试一试”的题目)你能根据∠1和∠2的度数,算出∠3的度数吗?自己先算一算,再用量角器量一量,看与算出的结果是否相同。

  学生汇报结果。

  三、 灵活运用,巩固练习

  1. 出示“想想做做”第1题。

  师:你能算出下面每个三角形中未知角的度数吗?独立完成。

  学生活动后,集体反馈。

  2. 出示下图。

  师:用今天学习的结论还能解决生活中的一些问题呢。这里的三张纸片都被撕去了一个角,你能猜一猜,它们原来是什么三角形吗?

  小结:从这几道题中,还知道了什么?(一个三角形中最多只有一个钝角或只有一个直角。)

  计算后校对。

  3. 出示“想想做做”第4题。

  师:你能算出下面三角形中∠3的度数吗?

  学生练习后,集体反馈。

  4. 出示“想想做做”第5题。

  独立计算并说明理由。

  四、 总结评价,延伸拓展

  师:今天你的收获是什么?你还有什么不明白的地方吗?你还想学习三角形的什么知识?

  师:学习了今天的知识,我们还能利用它去研究一些更复杂的问题呢!有信心吗?(有)我们来看这样的问题。(出示:思考题)这个问题请同学们课后去研究,如果谁发现了其中的规律,就把你发现的规律写在黑板上,与大家共同分享。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号