当前位置:首页 > 教案教学设计 > 数学教案

初中数学一元一次方程教案

日期:2021-12-10

这是初中数学一元一次方程教案,是优秀的数学教案文章,供老师家长们参考学习。

初中数学一元一次方程教案

初中数学一元一次方程教案第1部分

一、教学目标

【知识与技能】

理解一元一次方程及其相关概念,能根据实际问题中的等量关系列出一元一次方程。

【过程与方法】

通过探究一元一次方程的过程,提升观察与总结概括的能力。

【情感、态度与价值观】

在学习活动中获得成功的体验,提升对数学的兴趣。

二、教学重难点

【重点】一元一次方程及其相关概念,从实际问题到一元一次方程的分析过程。

【难点】分析实际问题中的等量关系列一元一次方程。

三、教学过程

(一)导入新课

出示问题:(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

通过提问如何解决引导学生想到算术法和方程法。

(二)讲解新知

再出示两个问题:

(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

组织同桌合作列方程,并说明等号两边的意义及列式依据。

在学生回答的基础上,教师板书:

组织同桌两人一组,观察并讨论三个方程的共同特点。提示学生从式的角度思考,关注项、次数、字母种类等。

通过师生问答形式引出“只有一个未知数”“未知数次数都是1”“等号两边都是整式”的特征后,教师讲解一元一次方程的定义。注意解释“元”的含义。

组织学生总结从上述实际问题到一元一次方程的分析过程,归纳得到:

初中数学一元一次方程教案第2部分

  教学建议

  一、重点、难点分析

  本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.

  二、知识结构

  本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.

  三、教法建议

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

  3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

  4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如

  和矛盾方程组如

  等概念,也不要使方程组中任何一个方程的`未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似

  之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数 的系数为0,方程(1)也看作一个二元一次方程.

  教学设计示例

  一、素质教育目标

  (-)知识教学点

  1.了解二元一次方程、二元一次方程组和它的解的概念.

  2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.

  3.会检验一对数值是不是某个二元一次方程组的解.

  (二)能力训练点

  培养学生分析问题、解决问题的能力和计算能力.

  (三)德育渗透点

  培养学生严格认真的学习态度.

  (四)美育渗透点

  通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.

  二、学法引导

  1.教学方法:讨论法、练习法、尝试指导法.

  2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.

  三、重点·难点·疑点及解决办法

  (-)重点

  使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.

  (二)难点

  了解二元一次方程组的解的含义.

  (三)疑点及解决办法

  检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.

  四、课时安排

  一课时.

  五、教具学具准备

  电脑或投影仪、自制胶片.

  六、师生互动活动设计

  1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.

  2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.

  3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.

初中数学一元一次方程教案第3部分

教学 建议

一、知识结构

本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.

二、重点、难点分析

本节 教学 的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.

1.在构成不等式组的几个不等式中

①这几个一元一次不等式必须含有同一个未知数;②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.

2.当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.

3.由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:

【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数 都不能使两个不等式同时成立.所以说这个不等式组无解或说其解集为空集.②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找.

三、教法建议

1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲.

2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容.

3.求公共解集是这节课的新授内容, 教师 要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分 教师 可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆.

4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算.

一元一次不等式组和它的解法(一)

一、素质 教育 目标

(一)知识 教学 点

1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组.

2.掌握一元一次不等式组解集的几种情况.

(二)能力训练点

通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力.

(三)德育渗透点

通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点.

(四)美育渗透点

用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美.

二、学法引导

1. 教学 方法:引导发现法、观察法、归纳总结法.

2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集.

三、重点·难点·疑点及解决办法

(一)重点

理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况.

(二)难点

正确理解一元一次不等式组解集的含义.

(三)疑点

弄清一元一次不等式解集和不等式组的解集的关系,以及对四种不等式组解集的一般形式的理解.

(四)解决办法

加强对不等式组解集含义的理解,并熟练掌握用数轴表示不等式解集,利用观察法、归纳法即可掌握求不等式组解集的办法.

四、课时安排

一课时.

五、教具学具准备

直尺、铅笔、投影仪或电脑、自制胶片.

六、师生互动活动设计

1. 教师 设计提问有关一元一次不等式的定义及其解集的概念,并复习用数轴表示一元一次不等式的解集的方法.

2.教示范一元一次不等式组解集的四种常规图形的表示方法,并引导学生理解记忆它们.

3.通过反复的师生共练,从实践中归纳小结出不等式组解集的规律.

七、 教学 步骤

(一)明确目标

本节课重点学习用数轴表示不等式组解集的方法,并能熟练地加以应用.

(二)整体感知

要正确表示出不等式组的解集的关键在于学会用数轴表示.若有解,必为其公共部分;若无公共部分,则为无解.并要正确地理解一元一次不等式组解集的规律.

(三) 教学 过程

1.创设情境,复习引入

(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?

(2)已知一个数 比2大但比4小,请在数轴上表示数 .

学生活动:口答(1)题.板演(2)题,如下图所示:

教师 分析:一个数 比2大但比4小,说明 取值使不等式 与 都成立,把一元一次不等式 与 合在一起,就组成了一个一元一次不等式组,记作 在数轴上表示不等式①②的解集

可以看出,使不等式 , 都成立的 值,是所有大于2并且小于4的数(记作 ),它们是不等式①、②的解集的公共部分,在数轴上表示成:

不等式①、②的解集的公共部分,叫做由不等式①、②组成的一元一次不等式组的解集.

【教法说明】通过学生板演, 教师 分析,使学生形成对不等式组解集的初步认识,激发了他们应用旧知识探索新知识的热情.

2.探索新知,讲授新课

(1)不等式组的解集:一般地,几个一元一次不等式的解集的公共部分叫做由它们组成的不等式组的解集.

说明:求不等式组解集的关键是找不等式解集的“公共部分”.若有公共部分,公共部分即为解集;若无公共部分,则不等式组无解.

(2)解不等式组:求不等式组解集的过程叫解不等式组.

请同学们根据自己的理解,解答下列各题.

例1 利用数轴判断下列不等式组有无解集?若有解集,请求出.

①  ②  ③  ④

学生活动:学生在练习本上完成,同时指定四个学生板演.板演完成后,由学生判断是否正确.

解:

  

  

  ①

  

  

  

  

  

  

  

  ②

不等式组解集为

  

  

  

  

   不等式组解集为

  

  

  

  

  

  

  ④

不等式组解集为

  

  

  

  

  

  不等式组无解

【教法说明】 教学 时,可用彩笔在数轴上描出折线的公共部分,这样可以使学生直观、形象地理解不等式组解集的含义,并掌握解集的表示方法.

3.尝试反馈,巩固知识

利用数轴判断下列不等式组有无解集?如有,请表示出来.

(1)  (2)  (3)  (4)

教学 活动:独立完成,同桌互阅,投影出示正确答案.

教师 活动:抽查部分学生,纠正错误.

一元一次不等式组中,不等式个数多于两个,解集求法有无变化呢?同学们通过解答下列各题,仔细体会.

利用数轴解下列不等式组:

(1)

  

  (2)

(3)

   (4)

学生活动:分析讨论,尝试得出答案;指名回答,与投影出示的正确解题过程对比.

答案:(1)  (2)  (3)  (4)无解

4.变式训练,培养能力

单项选择:

(1)不等式组 的整数解是( )

A.0,1

  B.0

  C.1

  D.

(2)不等式组 的负整数解是( )

A.-2,0,-1 B.-2 C.-2,-1 D.不能确定

(3)不等式组 的解集在数轴上表示正确的是( )

(4)不等式组 的解集在数轴上表示正确的为( )

(5)根据图中所示可知不等式组的解集为( )

A.  B.  C.  D.

学生活动:前后桌结组讨论完成,各组以抢答方式说出答案.

参考答案:C,C,D,A,C

【教法说明】设置上述题组旨在训练学生的思维能力;以抢答形式完成则是为了激发学生探索知识的热情.

(四)总结、扩展

不等式组

1.图示

2.折线特点

3.解集

4.解集与公共部分关系

(1)方向相反

(2)有公共部分

折线的公共部分

即为不等式组的解集

(1)方向相同

(2)有公共部分

(1)方向相同

(2)有公共部分

(1)方向相反

(2)无公共部分

无解

折线无公共部分,

不等式组无解

学生活动:填出表中,1,2,3,4四部分的内容,并讨论思考下列问题:

若 ,不等式组 的解集是什么?有规律可寻吗?

【教法说明】学生通过实践尝试得到规律,以此揭示规律存在的一般性、必然性,既训练了学生的归纳总结能力,也充分发挥了主体作用.

注意问题: 教学 时,每组不等式不要超过三个,关键是使学生理解和掌握解不等式的方法,不宜过于难、过于多,避免重复的机械计算.

八、布置作业

(一)必做题:P78 1;P79 A组1.

(二)选择题:

填空题:

1.不等式组 的非负整数解是_______________.

2.若 同时 满足与 ,则 的取值范围是______________.

3.一元一次不等式组 ( )的解集为 ,则 与 的大小关系为____________.

【教法说明】补充题旨在训练学生的思维能力、应变能力和解题灵活性.

参考答案

略.

九、 板书 设计

6.4 一元一次不等式组和它的解法(一)

三、小结

初中数学一元一次方程教案第4部分

  【一、教材分析】

  1、本节内容的地位和作用

  (1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

  2、教学目标(认知、能力、情感)

  (1)知识目标

  能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

  (2)能力目标

  进一步培养学生分析问题,解决实际问题的能力。

  (3)情感目标

  通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

  3、教学重点:

  引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

  知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

  4、教学难点

  掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

  用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

  5、教法学法

  优选教法

  本节课主要采用“学生主体性学习”的教学模式。通过多媒体创设情境,激发学生兴趣,提供问题让学生想,设计问题让学生做,方法技巧让学生归纳。教师的作用在于组织、引导、点拨,促进学生主动探索,积极思考,总结归纳,充分发挥学生的主体作用,让学生真正成为课堂的主人.

  指导学法

  学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我总结反思”的过程中学习。

  【二、教学环节】

  我把本节课设计为5个环节:

  1、情境引入相遇问题,初步感知列表方法

  张叔叔和他的朋友们开着越野车一同去森林探险,他们来到了森林不久不幸被一条毒蛇咬了,这种毒性在8小时就会发作,他们知道离森林大约600千米的地方有一个大医院,本医院的救护车60千米/小时,可他们开的越野车40千米/小时,你们想想,用什么办法就可以救张叔叔呢?

  通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题——相遇问题。

  引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。

  本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的`知识获取过程,真正体现了学生是数学学习的主人。

  2、感悟故事中的追及问题,拓展提高对列表的认识

  第二场龟兔赛跑:兔子为了体现自己的速度确实比乌龟快的多,他们约定兔子让乌龟先行40分钟,并且在比赛中兔子和乌龟都每跑1分钟,停1分钟,如果乌龟以每分钟1.2米的速度爬行,兔子以每分钟12米的速度行进,试问兔子追上乌龟需要多长时间?追上的地点距出发点有多远?

  以同学们熟悉的故事为背景,配以形象生动的动画,引入路程问题——追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。

  教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。

  3、回归现实,梳理新知

  浙江奥运健儿孟关良,在雅典奥运会上的夺冠为中国水上项目获得了第一枚金牌,掀开了中国水上项目的新篇章。金牌后面是无数的汗水,在千岛湖,孟关良是这样艰苦训练的:一艘快艇与孟关良的皮艇在同一起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?

  本环节让学生应用所学知识解决现实生活中的问题。

  本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。

  4、合作互动,深化提高

  编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。

  本环节让学生以小组为单位编写题目。

  前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新精神。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作精神和团队意识。

  5、畅谈收获,内化提高

  这节课体验到了什么?

  让学生总结本节学习收获和感受,全体同学交流。

  对学生数学学习的评价既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们总结收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。

  【设计亮点】

  (1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。

  (2)让学生经历实践—–认识——再实践——再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号