当前位置:首页 > 教案教学设计 > 数学教案

七年级一元一次方程教案

日期:2021-12-10

这是七年级一元一次方程教案,是优秀的数学教案文章,供老师家长们参考学习。

七年级一元一次方程教案

七年级一元一次方程教案第1部分

  教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯.

  教学重点和难点

  一元一次方程解简单的应用题的方法和步骤.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  例1 某数的3倍减2等于某数与4的和,求某数.

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3.

  答:某数为3.

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4.

  解之,得x=3.

  答:某数为3.

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

  我们知道方程是一个含有未知数的.等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

  二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42 500,

  所以 x=50 000.

  答:原来有 50 000千克面粉.

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿.

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

  例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程: 2x=10,

  所以 x=5.

  其苹果数为 3× 5+9=24.

  答:第一小组有5名同学,共摘苹果24个.

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

  (设第一小组共摘了x个苹果,则依题意,得

   三、课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.

  3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.

  四、师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆.

  五、作业

  1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台.这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.

七年级一元一次方程教案第2部分

  一、教学目标

  1、 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

  2、 初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;

  3、 培养学生获取信息,分析问题,处理问题的能力。

  二、教学难点、知识重点

  1、重点:建立一元一次方程的概念。

  2、难点:理解用方程来描述和刻画事物间的相等关系。

  三、教学方法

  讲练结合、注重师生互动。

  四、教学准备

  课件

  五、教学过程(师生活动)

  (一)情境引入

  教师提出教科收第79页的问题,并用多媒体直观演示。

  问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

  教师可以在学生回答的基础上做回顾小结

  问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)

  教师可以在学生回答的基础上做回顾小结:

  1、问题涉及的三个基本物理量及其关系;

  2、从知的信息中可以求出汽车的速度;

  3、从路程的角度可以列出不同的算式:

  问题3:能否用方程的知识来解决这个问题呢?

  (二)学习新知

  1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.

  如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.

  2、教师引导学生寻找相等关系,列出方程.

  问题1:题目中的“汽车匀速行驶”是什么意思?

  问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?

  教师根据学生的回答情况进行分析,如:

  依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

  依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:

  3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

  4、归纳列方程解决实际问题的两个步骤:

  (1)用字母表示问题中的未知数(通常用x,y,z等字母);

  (2)根据问题中的相等关系,列出方程.

  (三)举一反三讨论交流

  1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.

  列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

  列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

  2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、

  建议按以下的顺序进行:!

  (1)学生独立思考;

  (2)小组合作交流;

  (3)全班交流.

  如果直接设元,还可列方程:

  如果设王家庄到青山的路程为x千米,那么可以列方程:

  依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60

  说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.

  (四)初步应用、课堂练习

  1、例题(补充):根据下列条件,列出关于x的方程:

  (1)x与18的和等于54; (2)27与x的差的一半等于x的4倍.

  建议:本例题可以先让学生尝试解答,然后教师点评.

  解:(1)x+18=54;(2) (27-x)=4x.

  列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.

  2、练习(补充):

  (1) 列式表示:

  ① 比a小9的`数; ② x的2倍与3的和;

  ③ 5与y的差的一半; ④ a与b的7倍的和.

  (2)根据下列条件,列出关于x的方程:

  (1) 12与x的差等于x的2倍;

  (2)x的三分之一与5的和等于6.

  (五)课堂小结

  可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:

  1、 本节课我们学了什么知识?

  2、 你有什么收获?

  说明方程解决许多实际问题的工具。

  (六)本课作业

  1、 必做题:第84--85页习题3.1第1,5题。

  2、 选做题:根据下列条件,用式表示问题的结果:

  (1) 一打铅笔有12支,m打铅笔有多少支?

  (2) 某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?

  (3) 根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。

  (七)板书设计

  一元一次方程

  1、 定义

  2、 例

  3、 练习

七年级一元一次方程教案第3部分

  教材分析:

  《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

  设计思路:

  《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

  复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

  巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

  作业布置、反馈情况。

  教学目标:

  1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

  2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

  3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

  教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

  教学难点:分析实际问题中的相等关系,列出方程。

  教学方法:先学后教,当堂训练。

  教学准备:多媒体课件等。

  预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

  教学过程:

  一、准备阶段:

  1、知识回顾:

  (1)、用合并同类项的方法解一元一次方程的步骤是什么?

  (2)、解下列方程:

  ① -3·-2·=10 ②

  2、创设问题情境,导入新课。

  问题:

  把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

  如何解决这个问题呢?

  二、导学阶段:

  (一)、出示本节课的学习目标:

  1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

  2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

  (二)、合作交流,探究新知

  1、分析解决课前提出的问题。

  问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

  分析: 设这个班有·名学生.

  每人分3本,共分出___本,加上剩余的20本,这批书共____________本.

  每人分4本,需要______本,减去缺的25本,这批书共____________本.

  这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

  这批书的总数是一个定值,表示它的两个式子应相等,

  即表示同一个量的两个不同的式子相等.

  根据这一相等关系列得方程:

  方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

  方法过程:

  2、总结移项的概念。

  像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

  3、思考:上面解方程中“移项”起到了什么作用?

  4、例题学习

  运用移项的方法解下列方程:

  三、课堂练习:

  运用移项的方法解下列方程:

  四、课堂小结:

  本节课,我们学习了哪些知识?你还有哪些困惑?

  五、达标测试:

  运用移项的方法解下列方程:(25′×4=100′)

  六、预习作业:

  1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

  2、课后作业:(1)

七年级一元一次方程教案第4部分

  一、教材分析:

  1、教材所处的地位和作用:

  从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

  《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

  2、教学目标:

  根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

  知识技能目标

  ①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

  ②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

  ③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

  数学思考目标

  用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

  情感价值目标:

  让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

  3、重点、难点:

  结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

  教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

  教学难点:思维习惯的转变,分析数量关系,找相等关系。

  二、教学策略:

  如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

  1.生活引路,感知概念背景;

  2.比较方法,明确意义;

  3.感受过程,形成核心概念;

  4.运用新知,巩固方法;

  5.归纳总结,巩固发展.

  本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

  三、学情分析:

  根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

  四、教学过程:

  本节课的教学过程我设计了以下六个环节:

  (一) 情景引入

  采用教材中的情景

  在这个环节中我提出了三个问题:

  问题1:从上图中你能获得哪些信息?

  问题2:你会用算术方法求吗?

  问题3:你会用方程的方法解决这个问题吗?

  (二)学习新知

  在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为x千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

  通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

  然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

  解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用x,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

  在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

  方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

  在这里我开始向学生渗透列方程解决实际问题的思考程序.

  (三)讨论交流

  讨论1:比较列算式和列方程两种方法的特点.

  列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

  列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

  通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

  而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

  紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

  讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

  在这个讨论活动中,我采取了先小组合作交流后全班交流.

  通过交流后,学生中出现如下结果:

  从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

  要求出路程,只要解出方程中的x即可,我们在以后几节课中再来学习.

  在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

  (四)初步应用

  学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

  1、例题:根据下列问题,设未知数并列出方程:

  (1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

  (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

  (3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

  2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

  (五)再探新知

  提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

  在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

  教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

  思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

  (六)课堂小结

  让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

  本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

  五、课堂设计理念

  本节课着力体现以下几个方面:

  1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

  2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

  3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

  4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号