日期:2021-12-30
这是半圆形的周长,是优秀的美术教案文章,供老师家长们参考学习。
半圆形的周长第 1 篇
教学目标:
⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。
⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。
教学流程:
一、揭示课题
⑴猜测这节课的学习内容。
⑵揭示课题--圆的周长。
二、确定探索新知的方向。
⑴观察课前画在黑板上的两幅图。
分别指出正方形、圆形和正六边形的周长。
⑵沟通联系。
找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。
⑶比较周长的长短。
以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。
⑷确定探究方向。
量出圆的周长和直径,算出它们之间的倍数。
⑸准备数据采集。
序号
周长(c)cm
直径(d)cm
周长是直径的几倍
三、合作探究新知。
⑴学生操作活动。
小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。
教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。
教师在分组活动中采集到的数据。(是后加的,时加的)
序号
周长(c)cm
直径(d)cm
周长是直径的几倍
1
15.5
5
3.10
2
8.9
2.9
3.07
3
14
4.3
3.26
4
7.6
2.5
3.04
5
8.9
2.7
3.30
⑵合理,得出公式,
看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。
⑶介绍祖冲之。
四、利用新知解决简单的数学问题。
⑴说出计算周长的算式。
⑵口答练习十八1~2。
⑶作业练习十八3~4。
半圆形的周长第 2 篇一,教学目标
1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。
2,培养学生的观察,比较,概括和动手操作能力。
3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
二,教学重点
掌握并理解圆的周长,公式推导过程。
三,教学难点
理解圆周率的意义。
四,教学过程
一,创设情境,提出问题
1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。
2,你们知道这圈花边的边长是什么 (生:圆的周长。)
3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法
二,师生共同提出假设
1,请学生回忆正方形周长和边长的关系。(边长×4)
2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢
生:半径,直径……
3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么
学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。
4,师:你估计圆的周长是其直径的几倍
生猜想:3倍左右。
5,师:你有办法验证吗 生讨论
教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。
三,合作交流,发现规律
1,学生思考后可能出现的以下办法:
⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。
⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。
师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢
⑶ 学生在小组内动手操作,测量进行验证。
直径(cm) 周长(cm) 周长是直径的几倍
2 6。2 3倍多一点
3 9。1 3倍多一点
4 12。9 3倍多一点
2,
a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)
b,结合圆周率进行爱国注意教育。
c,师生共同推导计算圆的周长公式。
教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。
四,实践应用,拓展新知
1,学生尝试求圆的周长
d=2cm r=3。5cm d=10cm
2,圆形花坛的直径是20cm,它的周长是多少m
3,请同学们画一个周长是15cm的圆。
教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。
五,,体验成功
1,通过这节课的学习,你学会了什么
2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm
板书设计:
圆的周长
围成圆的曲线的长叫做圆的周长。
c=πd c=2πr
半圆形的周长第 3 篇教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长 直径)
这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)
既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用分米作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.142=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径圆周率)
如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?
(板书:C=d)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2r)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画,错误画。
(1)一个圆的周长总是它的直径的倍。( )
(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )
(3)圆周长的一半与半个圆的周长相等。( )
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[ ]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长 [ ]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
课堂教学设计说明
本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的.圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。
半圆形的周长第 4 篇教学目标:
1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:
复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:
一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?
2、圆的周长和面积公式是怎样推导出来的?
3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)
4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)
5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?
三、发现生活中的数学问题
教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界
教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典
以开心词典的形式,让学生做六道选择题。
六、走进生活,解决问题
1、小猴子骑独轮车走钢丝。求车轮要转多少周。
2、用绳子绕树干10周,求横截面的直径。
3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?
4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?
七、思考生活中的数学问题
1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?
2、阅读关于400米标准跑道的小资料。
课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号