日期:2021-05-07
这是华东师大版反比例函数教案,是优秀的数学教案文章,供老师家长们参考学习。
知识技能目标
1.理解反比例函数的概念,根据实际问题能列出反比例函数关系式;
2.利用正比例函数和反比例函数的概念求解简单的函数式.
教学过程
一、创设情境
两个相关联的量,一个量变化,另一个量也随着变化,如果两个数的积一定,这两个数的关系叫做反比例关系.
二、 探究归纳
问题1 小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了.假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系.
分析:设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.
因为在匀速运动中,时间=路程÷速度,所以
从这个关系式中发现:
1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.
2.自变量v的取值是v>0.
问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.
分析 根据矩形面积可知 xy=24, 即
从这个关系中发现:
1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;
2.自变量的取值是x>0.
课题 1.1反比例函数(1)
知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;
②会求简单实际问题中的反比例函数解析式。
程序性目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;
②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。
情感与价值观目标:
①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;
②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。
教学重点
反比函数的概念
教学难点
例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度。
教学媒体准备
教学设计过程
(①教学程序设计;②教法设计;③学法设计;④教材的处理与媒体。)
一、通过对两个变量之间的反比例关系的讨论和探究,使学生感受彼此之间特殊的一一对应关系,从而加深对函数概念的理解。
(创设情境
写出下列各关系:
1.长方形的长为6,宽y和面积x之间有什么关系?
2、长方形的面积为6,一边长x和另一边长y之间要有什么关系?)
两个相关联的量,一个量变化,另一个量也随着变化,如果两个变量的积是一个不为零的常数,我们就说这两个变量成反比例.借助正比例关系与反比例关系的类比,为问题的后续探究构建感性的氛围。
(请看下面几个问题:
探究:
问题1:北京到杭州铁路线长为1661km。一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h), (1)你能完成下列表格吗?
X(h)
12
15
17
22
y(km/h)
87.4
(2) Y与x成什么比例关系?能用一个数学解析式表示吗?)
(问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.
设它的一边长为x(米),请写出另一边的长y(米)与x的关系式.
根据矩形面积可知
x y=24,
即……)
使学生在体验探究的过程中,感受知识的形成过程,从而为知识的内化和正迁移创造了条件。
二、引导学生尝试自主、合作的学习,使学生经历知识构建和发现的过程,借此提出反比例函数的概念,培养了学生建模的意识、也发展了数学建模的能力。
(挑战自我
1、某住宅小区要种植一个面积为1000 平方米的矩形草坪,草坪长为 y米,宽为 x 米,则 y关于 x 的关系式为______;
2、已知北京市的总面积为1.68×104 平方千米,全市总人口为 n 人,人均占有土地面积为 s 平方千米,则s关于n的关系式为______;
3、京沪线铁路全程为1463 km,某列车平均速度为 v(km/h),全程运行时间为t(h),
则v关于t的关系式为______。)
构建互动、和谐的课堂教学氛围,使学生对反比例函数概念完成从感性体验到理性认知的过渡。
(发现:
一般地,若变量y与x反比例,则有xy=k(k为常数,k≠0 ),也就是y=。
归纳:上述几个函数都具有 y=的形式,一般地形如 y=(k是常数,k≠0)的函数叫做反比例函数(proportional function). k叫做反比例函数的比例系数,且反比例函数的自变量x的值不能为零。)
(练习
1、下列函数中,哪些是反比例函数?说出反比例函数的比例系数
⑴y = -3x; ⑵y = 2x+1; ⑶y=;⑷y =3(x-1)2+1;⑸y=(s是常数,s≠0);⑹ xy= - ;⑺ x=-5y ;)
利用学生对反比例函数概念的初步认识,引导学生借助自主练习,进一步加大学生对该概念的正迁移力度。
三、利用阿基米德的“撬动地球”的.历史故事,结合了学生的心理发展特点,很好的激发了学生对问题探究的兴趣。我们常说,于其让学生“苦学”,不如让学生“乐学”。
创设一种欲罢不能的心理氛围,从而使学生形成了问题探究的动机。进一步培养学生分析问题、解决问题的数学建模能力。
(背景知识
给我一个支点,我可以撬动地球!
——阿基米德)
(【例1】如图,阻力为1000N,
阻力臂长为5cm.
设动力y(N),动力臂为x(cm)
(图中杠杆本身所受重力略去不计。杠杆平衡时:动力动力臂=阻力阻力臂)
(1)求y关于x的函数解析式。
这个函数是反比例函数吗?如果是,请说出比例系数;
(2)求当x=50时,函数y的值,并说明这个值的实际意义;
(3)利用y关于x的函数解析式,
说明当动力臂长扩大到原来的n倍时,
所需动力将怎样变化?)
例题1涉及较多的《科学》学科的知识,学生在理解问题的背景时
有一定的难度,是本节教学的难点,教师在给出例题以前,有必要介绍一下“杠杆原理”,借助多媒体的教学辅助作用,使问题的出示显得活泼、直观,增强了问题的趣味性,从而更好的促使学生对问题的体验、探究。
(回顾与思考
练1. 一个三角形,一边长为 x cm,这边上的高为 y cm,它的面积为 25 cm2.求 (1) y 关于x的函数关系式,并判断是什么函数?(2)自变量x的取值范围 (3) 当 y = 10 时 x 的值.
练2.一个矩形的面积是20cm2,相邻的两条边长为xcm和y cm,那么变量y是x的函数吗?是反比例函数吗?为什么?
练3.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?)
在一次引导学生通过对以上问题的回顾与思考,更有效的促使学生亲历知识发生和发展的过程。很好的紧扣了本课时的过程性教学目标。
(课内练习:
1、已知反比例函数 y=kx-,
⑴说出比例系数;
⑵求当x=‐10时函数的值;
⑶求当y= 2时自变量x的值。
2、设面积为10cm的三角形的一边长为a(cm),这条边上的高为h(cm),
⑴求h关于a的函数解析式及自变量a的取值范围;
⑵ h关于a的函数是不是反比例函数?如果是,请说出它的比例系数
⑶求当边长a=25cm时,这条边上的高。 )
应该说,本课时的教法设计能很好的结合学生的心理发展特点和规律、结合学生的认知水平和经验、结合学生发展的能力要求。应该真正确立“以人为本”的教学理念。课堂教学中情景、例题、互动练习的设计;及多媒体的应用无不体现了这样的要求。
四,借助学生自主进行的课时及所学问题的小结,辅之以教师对反馈问题的设计,应该在培养学生良好的思维品质(反思),在培养学生对问题看法的自我校正、自我反馈的意识和能力有一定的作用。
(通过这节课的学习,你有什么收获?)
(交流反思 :
本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如y=(k是常数,k≠0)的函数叫做反比例函数(proportional function).
k叫做反比例函数的比例系数,其中反比例函数的自变量x的值不能为零。)
(检测反馈
1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?
(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;
(2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;
(3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;
(4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.)
《反比例函数的意义》教学反思
昆阳二中陈春莲
《反比例函数的意义》教学反思:首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达式,对反比例函数表达式的总结作了一个铺垫。其次利用题组(一)中的三个题目列出了
v=(1)及教学反思----------陈春莲" TITLE="1.1反比例函数(1)及教学反思----------陈春莲" />,xy=k(k为常数,k≠0 ),也就是y= 。s=(1)及教学反思----------陈春莲" TITLE="1.1反比例函数(1)及教学反思----------陈春莲" />
三个表达式,当让学生观察这三个表达式与以前我们所学的y=kx+b和y=kx有什么联系时,居然有很多同学认为它们和正比例函数类似,当时在课堂上对于这个问题的处理过于仓促,现在想来应注意细节问题。利用题组
(二)对反比例函数的三种表示方法进行巩固和熟悉。
例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。
虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。
还希望数学组的老题多提宝贵的意见。谢谢了!
数概念教学如何设计?在螺旋式课程的安排下,新课中预料不到的问题会忽然出现,在课前应该提前考虑学生知识可能衔接问题、支撑新课的基础学生遗忘的程度,课中及课后可能出现的问题,教学如何体现学生的主体等问题我都进行了课前反思。经过上课及学生反馈的情况有主要如下:
1.课前预料到学生函数的概念已经遗忘,所以复习函数的概念十分必要。实际上在课中,学生没有人说出函数的真正内含。一次函数的概念学生也多数学生回忆不起来了。分析可能有如下原因:① 函数的`学习是数学课程的难点。②函数学习早不符合当时学生认识问题心理。虽然学生生活在变化的世界,但是年龄小,思维以静态思维为主,对变与变的关系认识会感觉困难。③新课程教学点总是有一带而过的感觉。教师想把知识点扎实,时间不够,增加课堂容量,容易出现灌输式教学。故学生对函数概念忘的多是自然情况。
2.教学中课本的实际问题和学生已有的知识建构不符。如电学中电流、电阻、电压学生没有学过,如果应用课本提出问题教师需要讲解相应物理知识,如果不用可换成学生熟悉的实际生活事例,
3.考虑学生反比例函数理解的问题增加一些问题。比如表达的形式:xy=5,xy=0,负1次等让学生判断。
4.课堂中的问题力求学生解决,不怕出问题,只要学生积极思维就达到目的了。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号