当前位置:首页 > 教案教学设计 > 数学教案

随机抽样教学设计

日期:2021-05-14

这是随机抽样教学设计,是优秀的数学教案文章,供老师家长们参考学习。

随机抽样教学设计

随机抽样教学设计第1篇

“随机抽样”教学设计及反思

浙江省杭州市余杭高级中学 吴寅静

统计和概率的基础知识是一个未来公民的必备常识①,它是中小学数学课程的重要内容.

在高中阶段,统计的学习从《必修3》第二章开始,本节课是开篇.好的开端等于成功的一半,因此本课很重要.笔者有幸承担本次课题会研究课的教学任务,在接受专家、同行的点评和指导中,对高中阶段的统计教学有了更深的认识.

下面分教学准备、教学设计和教后反思与大家共享我的心得.

  教学准备

接到任务后,笔者首先查阅了一些统计论著.可惜,统计专业知识介绍的书籍多,统计教学的论著少之又少.这也从一个侧面反映了我国对中学统计教学研究的不足.

一、教什么

起始课究竟上什么内容?笔者征询了同事们的意见,绝大多数人认为,由于义教阶段学生对全面调查、抽样调查、样本、样本容量等概念都已很熟悉,没必要再纠缠.因此,第一堂课除了简单介绍本章学习内容以及随机抽样的必要性和重要性外,应将“2.1.1简单随机抽样”作为重点,这样整堂课就比较充实,不至于没有内容可讲.也有人认为,《教师教学用书》建议“2.1随机抽样”约为5课时,因此第一课时应只介绍随机抽样而不必涉及抽样方法.

笔者在听取了这些建议,经过再三思考后,决定把本课的教学内容定位于章引言和“随机抽样”的开篇,但不涉及具体抽样方法.理由如下:

1.章引言是整章内容的概括和介绍,既有先行组织者的作用,同时也能以此引出本课需要学习的内容.作为起始课,章引言的作用不可忽略.

2.虽然学生在小学、初中都学过统计,但对为什么要随机抽样,怎么进行随机抽样等的认识还不足.

3.作为统计的起始课,更重要的是让学生通过一些具体的实例感受随机抽样的必要性和重要性,而不是介绍一些具体的抽样方法.

二、怎么教

上述内容定位对教师提出的最大挑战就是如何寻找合适的素材,这个素材既要贴近学生的生活,又能让学生比较容易地参与到抽样活动中,在活动中体会随机抽样.几经选择后,笔者从教材中近视率的背景图中得到启发,设置了一系列关于调查学生近视率的问题串,以此开展整堂课的教学.整个教学过程分解为以下几个部分:

1.通过章头图提供的信息让学生感受数据,提出质疑即:这些数据是怎么来的?

2.让学生调查班级的近视率,感受普查的作用.

3.通过调查年级和全市高一学生的近视率,感受抽样调查的必要性,感受如何才能使样本具有代表性.

4.在小组讨论和师生交流中体会统计结果的不确定性.

5.在小结中结合章头图进行总结回顾,引出本章的知识框架.

教学设计

一、内容和内容解析

1.内容

本课主要内容是让学生了解:认识客观现象的第一步就是通过观察或试验取得观测资料,然后分析这些资料来认识此现象.获取有代表性的观测资料并正确地加以分析是正确认识未知现象的基础,也是统计所研究的基本问题.

2.内容解析

本课是高中统计的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在义教阶段已学了收集、整理、描述和分析数据等处理数据的基本方法.高中的统计学习将逐步让学生体会确定性思维与统计思维的差异,了解统计结果的随机性特征,知道统计推断可能出错.统计有两种:一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如人口普查.但在很多情况下我们无法采用描述性统计对所有个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常大,或者质量检查具有破坏性.

抽样调查是收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用样本数据来推断总体.其中蕴涵了重要的统计思想——样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则是保证样本能很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.

本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.

二、目标和目标解析

1.目标

(1)通过具体案例的分析,逐步学会从现实生活中提出具有一定价值的统计问题;

(2)结合实际问题情境,理解随机抽样的必要性和重要性,深刻理解样本的代表性.

2.目标解析

章引言列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.通过具体实例,引导学生尝试从实际问题中发现并提出统计问题.以培养学生从现实生活或其他学科中发现问题、提出问题的能力、意识和习惯.

对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大.出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查.教学中要通过一定实例让学生体会随机抽样的必要性和重要性.为了使由样本到总体的推断有效,样本必须是总体的代表.在对实例的分析过程中,探讨获取有代表性的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.

三、教学问题诊断分析

  学生在初中已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对设计合理的抽样方法,以使样本具有好的代表性的意识还不强.在已有学习中,学习内容多以确定性数学为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学;这里,我们要通过具体问题,让学生体会统计的重要思想——用样本估计总体以及统计结果的不确定性.因此,学生已有知识经验与本节要达成的教学目标之间有较大差距.主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.

  教学中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批灯泡的寿命等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本等,这样可以培养学生提出统计问题的能力.

因此,本课的教学难点是:理解怎样的抽样才是随机抽样,如何抽样才能更好地代表总体.

四、教学支持条件分析

准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.

五、教学过程设计

(一)感悟数据、引入课题

问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?

师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?

设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.

问题2:我们班级有很多同学都是戴眼镜的,你知道我们班的近视率吗?你是怎么知道的?

设计意图:通过与学生比较贴近的案例,让他们体会统计与日常生活的关系.

(二)操作实践、展开课题

问题3:如果我想了解我校所有高一学生的近视率,你打算怎么做呢?

师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.

设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.

问题4:你认为下列预测结果出错的原因是什么?

在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(A.Landon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:

   

设计意图:通过案例让学生进一步体会到:在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性.

问题5:如果要调查下面这几个问题,你认为应该作全面调查还是抽样调查?大家对普查和抽样调查是怎么看的?普查一定好吗?请举例.

(1) 了解全班同学每周的体育锻炼时间;

(2) 调查市场上某个品牌牛奶的含钙量;

(3) 了解一批日光灯的使用寿命.

  

   

设计意图:通过普查和抽样调查的比较,使学生感受抽样调查的必要性和重要性.

问题6:如果我们想了解晋中市高一学生的近视率,你认为该怎么做呢?

师生活动:以2人小组为单位进行讨论,说出比较可行的抽样方案.

问题7:是否可以用晋中市高一年级学生的近视率来估计山西省高中生的近视率?为什么?

师生活动:教师继续让学生进行小组讨论,引导学生从样本容量以及样本抽取需要考虑的要素,如:学生的层次(高一、高二、高三),学生生活的环境(城市、县镇、农村)等.教师对学生的回答进行归纳、整理,与学生一起讨论出比较可行的抽样方案.

设计意图:通过进一步的追问,加深学生对样本代表性的理解.让学生进一步认识到:在多背景下的抽样会产生偏差,以及样本的随机性与样本大小在产生有代表性的样本中的作用,同时对后面的内容进行简单介绍.

(三)总结拓展、提升思想

问题8:请你用简要的语言说说自己在本节课的收获.

师生活动:引导学生从怎样学会提出统计问题?抽样调查与普查的优缺点?样本的代表性与统计推断结论之间的关系等方面进行总结和回顾.教师结合章头图对这一章的框架进行简单的介绍,引导学生建构知识体系.

  

  

  

  

设计意图:总结回顾,巩固课堂知识、初步概括统计思想.

六、目标检测设计

1.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是( )

A.在公园调查了1000名老年人的健康状况

B.在医院调查了1000名老年人的健康状况

C.调查了10名老年邻居的健康状

D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.

设计意图:促进学生理解抽样的必要性和样本的代表性.

2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是

  A.总体是240 B.个体是每一个学生

  C.样本是40名学生 D.样本容量是40

设计意图:回顾复习相关概念.

3.为了了解全校学生的平均身高,王一调查了自己座位旁边的五位同学,把这五位同学的身高的平均值作为全校学生平均身高的估计值.

(1)王一的调查是抽样调查吗?

(2)如果是抽样调查,指出调查的总体、个体、样本和样本容量;

(3)这个调查结果能较好的反映总体的情况吗?如果不能,请说明理由.

设计意图:回顾抽样调查的几个基本概念,强化抽样调查中样本的代表性.

教学反思

  上完课后,许多听课的教师都对这堂课提出了自己不同的看法,同时也促使笔者进一步思考,究竟该如何来上好这一堂课.

一、如何利用章引言

在人教A版教材中每一章的开头都有章头图和章引言,统计也不例外.对于一线教师来说,章引言的作用以及如何用好章引言都是值得探讨的问题.

1.章引言的作用

统计的章头图、章引言包括日常生活中的一些数据,如缺水量、沙漠化以及相关的一些图表等,还有对本章内容的文字介绍.这些信息的作用在哪里,如何在起始课中把这些信息传递给学生成为笔者首要考虑的问题.在与教研员和同行的探讨中,我们认为统计的章引言有以下几点作用:

(1)沙漠化的图片以及文字说明可以让学生体会到有些数据无法普查,只能通过抽样调查来得到,这还渗透着环保意识.

(2)十大城市缺水量的图表及相关文字既回顾了初中的统计图表,同时也为学习“用样本估计总体”埋下伏笔.

(3)章头图中三个章节的标题以及整个文字介绍对整章起着统领作用.

2.章引言的教学思考

  鉴于上述三点作用,对于章引言的教学我们采取了以下做法:

(1)充分利用章头图、章引言中的数据和图片如沙漠化、我国缺水量排名等,在让学生增强环保意识的同时能更为理性地关注数据的来源及其真实性,学会质疑、通过质疑引入本节课的课题,同时也让学生体会到学习这一知识的必要性.

(2)由于章引言中有些概念学生尚未学习,不适宜在课堂一开始就介绍,将其放在课堂小结之后,教师引导学生进行知识框架的构建,可能效果更好.

3.章引言教学效果的分析

自我感受是章引言的作用没有很好的体现,原因在于:

(1)没有考虑学生已有的认知基础.笔者本以为在上课一开始给出沙漠化等数据后,学生会对数据的来源产生质疑,但是几乎全班同学都肯定地认为这个数据是通过抽样调查得到的.

(2)由于上课的节奏没有把握好,没能利用章引言帮助学生构建好知识框架,我自己在课堂上也没有进行很好地解读.

二、如何体现螺旋上升

上完这一节课后,部分听课教师认为这节课似乎是把初中的统计课重上了一遍.新课程实施后,学生从小学一年级就开始学习统计,到初中什么是统计,如何进行数据的收集、整理与描述已有较多的体验,什么是普查、抽样调查、样本、样本容量等概念也都已经比较清晰.而“2.1随机抽样”的教学内容也就是这一些,听课教师有此感受实属正常.

笔者在上这一堂课的时候也存在着这个困惑.对于高中的统计内容,从随机抽样到用样本估计总体、两个变量的相关关系以及选修IA中的统计案例,知识上的螺旋上升比较明显,但是从小学、初中、高中统计学习的螺旋上升框架却并不明晰.比如“随机抽样”中概念、内容基本上都是学生初中已学过的,甚至教材上“一个著名案例”在有些初中教材中也曾出现过.针对这个情况,笔者确定将教学重心落在让学生体会随机抽样的必要性和重要性上,通过课堂的实践操作让学生进一步体会为什么要抽样,如何进行抽样,并在对抽样的比较中体会样本的随机性和统计结果的不确定性.这些在初中的统计教学中没有得到强化,同时也成为本节课值得提升的内容.

课堂实践后,从听课教师的反应来看,这个螺旋上升还没有得到很好的体现,究其原因:

1.教学设计中各个教学环节的设计意图不够明晰.

2.教学过程中强调了学生的参与,教师有效的归纳、总结、提升相对缺乏.

3.没有将理念性的信息通过有效的载体显现,教学中的问题链未达到需要达到的教学层次.

三、如何渗透统计思想

让学生不断体会统计思想是一个重要的教学任务.随机抽样中渗透统计思想是基本任务也是主要任务.笔者在本堂课的教学中也深切体会到了教学的困难.

1.思想是教不会的,它是学生在参与对具体的问题的实践和分析中逐步体会得到,如何寻找恰当、适时的问题或案例让学生进行有效的体会、研究、实践是一个重要问题.笔者在本堂课中通过让学生调查班级、年级、全市、全省中学生的近视率这一条主线进行随机抽样的教学,在让学生小组讨论、全班交流的过程中渗透统计思想.从课堂效果来看,这个教学载体并不是最佳的,但是笔者至今也尚未找到更好的教学载体.

  2.概念教学应更多地采用归纳式教学,这对教师提出了极大的挑战.教师绝大多数是在“演绎”的教学中学习长大,我们在中学时所接受的学习方式会影响自己的教学方式.笔者也不例外,从小被演绎惯了,即使有意识地要让学生自己进行实践体会并逐步归纳,但是在教学中还是时不时地“滑向”演绎.

  3.课堂的教学时间是有限的,如何在有限的时间内既让学生充分体验、感受统计思想,又能很好完成各项教学任务,提高教学效率,这将是笔者今后的努力方向,虽然做到这一点会很难.

最后感谢课题组专家、成员以及所有的听课教师提出的建议和意见,同时也希望这一堂课能起到抛砖引玉的作用,让更多的教师关注统计,关注统计教学,使这个现代公民必备的常识能在课堂上打下良好基础,并能促使学生学以致用.

参考文献:

①章建跃.“中学数学核心概念、思想方法结构体系及其教学设计的理论与实践”第七次课题研讨会成果综述[J].中国数学教育,2009(4).

②中华人民共和国教育部.普通高中数学课程标准(实验)[S].北京:人民教育出版社,2003.

③刘绍学.普通高中课程标准实验教科书.数学必修3.人民教育出版社(A版).2009年4月浙江第4次印刷.

随机抽样教学设计第2篇

  三维目标:

  1、知识与技能: 正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2、过程与方法: (1)能够从现实生活或其他学科中提出具有一定价值的统计问题; (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取 样本。

  3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

  4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

  教学方法:讲练结合法

  教学用具:多媒体

  课时安排:1课时

  教学过程:

  一、问题情境

  假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做? 显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?

  二、探究新知

  1、统计的有关概念: 总体:在统计学中,所有考察对象的全体叫做总体. 个体:每一个考察的对象叫做个体. 样本:从总体中抽取的一部分个体叫做总体的一个样本. 样本容量:样本中个体的数目叫做样本的容量. 统计的基本思想:用样本去估计总体.

  2、简单随机抽样的概念 一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

  下列抽样的方式是否属于简单随机抽样?为什么? (1)从无限多个个体中抽取50个个体作为样本。 (2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。 (3)从8台电脑中,不放回地随机抽取2台进行质量检查(假设8台电脑已编好号,对编号随机抽取)

  3、常用的简单随机抽样方法有:

  (1)抽签法的定义。 一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  思考? 你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗? 例1.若已知高一(6)班总共有57人,现要抽取8位同学出来做游戏, 请设计一个抽取的方法,要使得每位同学被抽到的机会相等。

  分析:可以把57位同学的学号分别写在大小,质地都相同的纸片上, 折叠或揉成小球,把纸片集中在一起并充分搅拌后,在从中个抽出8张纸片,再选出纸片上的学号对应的同学即可. 基本步骤:第一步:将总体的所有N个个体从1至N编号; 第二步:准备N个号签分别标上这些编号,将号签放在容器中 搅拌均匀后每次抽取一个号签,不放回地连续取n次; 第三步:将取出的n个号签上的号码所对应的n 个个体作为样 本。

  (2)随机数法的定义: 利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。 怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。 第一步,先将800袋牛奶编号,可以编为000,001,…,799。

  第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28 第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;

  继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。

  三、课堂练习

  四、课堂小结

  1.简单随机抽样的概念 一般地,设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

  2.简单随机抽样的方法:抽签法 随机数表法

  五、课后作业

  P57 练习 1、2

  六、板书设计

  1、统计的有关概念

  2、简单随机抽样的概念

  3、常用的简单随机抽样方法有:(1)抽签法(2)随机数表法

  4、课堂练习

随机抽样教学设计第3篇

简单随机抽样

一、本课教学内容的本质、地位、作用分析

(一)教材所处的地位和前后联系

本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

(二)教学重点

①简单随机抽样的概念,

②常用实施方法:抽签法和随机数表法

(三)教学难点

对简单随机抽样概念中“每次抽取时各个个体被抽到的概率相等”的理解.

二、教学目标分析

1、知识目标

(1)理解并掌握简单随机抽样的概念、特点和步骤.

(2)掌握简单随机抽样的两种方法:抽签法和随机数表法.

2、能力目标

(1)会用抽签法和随机数表法从总体中抽取样本,并能运用这两种方法和思想解决有关实际问题.

(2)灵活运用简单随机抽样的方法解释日常生活中的常见非数学 问题的现象,加强观察问题、分析问题和解决问题的能力培养.

3、情感、态度目标

(1)培养学生收集信息和处理信息、加工信息的实际能力,分析问题、解决问题的能力.

(2)培养学生热爱生活、学会生活的意识,强化他们学生活的知识、学生存的技能,提高学生的动手能力.

三、教学问题诊断

本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

1、创设情境,揭示课题

用多媒体展示情景:新闻报道全国高校毕业生就业率问题。举例说明一些实际问题,提出统计的概念。并提出思考问题: 如何收集数据? 请同学们举例说明.,请学生自由发言,对学生的发言进行补充,辨析普查与抽样调查。提出抽样调查的必要性。从实际问题入手,提出抽样调查的科学性。教师对学生的发言进行补充,同时向学生介绍我们所要研究的简单随机抽样、系统抽样、分层抽样都是不放回抽样.今天我们就来学习简单随机抽样.(板书课题)

2、学法指导,研探新知

思考1:

从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?

一般地,从N个个体中任意抽取一个,则每个个体被抽到的概率是多少?

思考2:

从6件产品中随机不放回抽取一个容量为3的样本,在这个抽样中,每一件产品被抽到的概率是多少?

一般地,从N个个体中随机抽取n个个体作为样本,则每个个体被抽到的概率是多少?

规律总结:

一般的,如果用简单随机抽样,个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的概率都相等。  .

3 实际运用,巩固升华

简单随机抽样体现了抽样的客观性和公平性,如何实施简单随机抽样呢?

①抽签法

提出问题学校要进行庆典,每个班到主会场观看节目有6个名额,高二(24)班共有57人,怎样分这6个名额? 要求:每个学生获得名额的概率相等小组讨论设计操作步骤。 

学生很容易联想到抽签法这时我又抛出一个问题:那如何实施抽签法?学生能根据生活中的经验来实施抽签法引导学生从解决这个问题的方法得出抽签法的一般步骤:

先将总体中的所有个体(共有N个)编号(号码可从1到N)并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.

②随机数表法

请你设计分配方案:

5·12特大地震后,都江堰某地区198户地震损毁户需要搬进安居房,规模创造了全国之最.近期首批20套安居房准备发放.要求:每户首批获得安居房的概率相同 ,从而提出随机数表法的概念

随机数表法:为了简化制签过程,我们借助计算机来取代人工制签,由计算机制作一个随机数表,我们只需要按照一定的规则,到随机数表中选取在编号范围内的数码就可以,这种抽样方法就是随机数表法。

步骤:

(1)将总体中的所有个体编号(每个号码位数一致)

(2)在随机数表中任取一个数作为开始。

(3)从选定的数开始按一定的方向(或规则)读下去,得到的号码若不在编号中,则跳过;若在编号中则取出;如果得到的号码前面已经取出,也跳过;如此继续下去,直到取满为止。

(4)根据选定的号码抽取样本。

4、动手操作,合作交流

学生亲自动手进行抽签,体会抽签的公平性。

5、承上启下,留下悬念

回到开篇提到的实际问题,引出抽样还有其他方法。

四、教法分析和学法指导

(一)教法分析

1、讨论法与自学法相结合

改变传统的把学生看作是接受知识的“容器”的现象.让学生参与到教学活动的全过程中来,体现学生参与的主体地位,使学生手、脑、口并用,主动地获取知识,允许学生争论,在讨论中加深学生对知识的理解与掌握.如在解决“整个抽样过程中每个个体被抽到的概率是相等的”时组织学生讨论,在讨论的过程中使学生对这一难点有一个清楚的认识;又如在学习随机数表法时组织学生自学,既提高了学生独立学习、主动获取知识的能力又能满足学生在自学的过程中获得的成就感从而培养了自信心.

2、指导法

结合一些具体事件,如对用抽签法解决问题等事件进行分析,从而使学生对简单随机抽样过程有一个清楚的认识,加深对简单随机抽样方法的理解. 

3、利用多媒体辅助教学

(二)学法指导

(1)通过丰富的例子引入数学知识,引导学生应用数学知识解决实际问题,教会学生从生活中发现数学,学习数学,如学生从生活的实例发现问题得出简单随机抽样方法就是从生活

中发现数学,用数学解决实际问题.

(2)教会学生独立思考、自主探索、动手实践、合作交流的学习数学的方式,体现在整个教学过程中,如“研探新知”、“实际运用”等.

五、预期效果

学生能够用简单随机抽样方法,解决部分实际问题。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号