当前位置:首页 > 教案教学设计 > 数学教案

集合间的基本关系教案课前准备

日期:2021-04-22

这是集合间的基本关系教案课前准备,是优秀的数学教案文章,供老师家长们参考学习。

集合间的基本关系教案课前准备

集合间的基本关系教案课前准备第1篇

  教材分析:类比实数的大小关系引入集合的包含与相等关系

  了解空集的含义

  课 型:新授课

  教学目的:(1)了解集合之间的包含、相等关系的含义;

  (2)理解子集、真子集的概念;

  (3)能利用Venn图表达集合间的关系;

  (4)了解与空集的含义。

  教学重点:子集与空集的概念;用Venn图表达集合间的关系。

  教学难点:弄清元素与子集 、属于与包含之间的区别;

  教学过程:

  一、引入课题

  1、复习元素与集合的关系——属于与不属于的关系,填以下空白:

  (1)0 N;(2) $2$2$2$2$2$2$2$2$2$2$2$2$2$2$2 Q;(3)-1.5 R

  2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)

  二、新课教学

  (一) 集合与集合之间的“包含”关系;

  A={1,2,3},B={1,2,3,4}

  集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;

  如果集合A的.任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。

  记作: $2

  $2$2

  读作:A包含于(is contained in)B,或B包含(contains)A

  当集合A不包含于集合B时,记作A B

  用Venn图表示两个集合间的“包含”关系

  B

  A

  $2

  (二) 集合与集合之间的 “相等”关系;

  $2,则 $2中的元素是一样的,因此 $2

  即 $2

  练习

  结论:

  任何一个集合是它本身的子集

  (三) 真子集的概念

  若集合 $2,存在元素 $2,则称集合A是集合B的真子集(proper subset)。

  记作:A $2 B(或B $2$2$2A)

  读作:A真包含于B(或B真包含A)

  举例(由学生举例,共同辨析)

  (四) 空集的概念

  (实例引入空集概念)

  不含有任何元素的集合称为空集(empty set),记作: $2

  规定:

  空集是任何集合的子集,是任何非空集合的真子集。

  (五) 结论:

  1 $2 2 $2,且 $2,则 $2

  (六) 例题

  (1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

  (2)化简集合A={x|x-3>2},B={x|x $25},并表示A、B的关系;

  (七) 课堂练习

  (八) 归纳小结,强化思想

  两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;

  (九) 作业布置

  1、书面作业:习题1.1 第5题

  2、提高作业:

  1 已知集合 $2, $2≥ $2,且满足 $2,求实数 $2的取值范围。

  2 设集合 $2,

  $2,试用Venn图表示它们之间的关系。

  板书设计(略)

集合间的基本关系教案课前准备第2篇

子集

如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。

符号语言:若任意a∈A,均有a∈B,则A⊆B或B⊇A。

真子集

如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集。记作A⊊B(或B⊋A)。

非空真子集

如果集合A⊊B,且集合A≠∅,集合A是集合B的非空真子集。

全集

如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(通常也把给定的集合称为全集),通常记作U。

空集

不含任何元素的集合叫做空集。空集是一切集合的子集。空集是任何非空集合的真子集。空集不是无;它是内部没有元素的集合。

集合的含义

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

集合间的基本关系教案课前准备第3篇

  教材分析:类比实数的大小关系引入集合的包含与相等关系

  了解空集的含义

  课 型:新授课

  教学目的:(1)了解集合之间的包含、相等关系的含义;

  (2)理解子集、真子集的概念;

  (3)能利用Venn图表达集合间的关系;

  (4)了解与空集的含义。

  教学重点:子集与空集的概念;用Venn图表达集合间的关系。

  教学难点:弄清元素与子集 、属于与包含之间的区别;

  教学过程:

  一、引入课题

  1、复习元素与集合的关系——属于与不属于的关系,填以下空白:

  (1)0 N;(2) $2$2$2$2$2$2$2$2$2$2$2$2$2$2$2 Q;(3)-1.5 R

  2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)

  二、新课教学

  (一) 集合与集合之间的“包含”关系;

  A={1,2,3},B={1,2,3,4}

  集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;

  如果集合A的.任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。

  记作: $2

  $2$2

  读作:A包含于(is contained in)B,或B包含(contains)A

  当集合A不包含于集合B时,记作A B

  用Venn图表示两个集合间的“包含”关系

  B

  A

  $2

  (二) 集合与集合之间的 “相等”关系;

  $2,则 $2中的元素是一样的,因此 $2

  即 $2

  练习

  结论:

  任何一个集合是它本身的子集

  (三) 真子集的概念

  若集合 $2,存在元素 $2,则称集合A是集合B的真子集(proper subset)。

  记作:A $2 B(或B $2$2$2A)

  读作:A真包含于B(或B真包含A)

  举例(由学生举例,共同辨析)

  (四) 空集的概念

  (实例引入空集概念)

  不含有任何元素的集合称为空集(empty set),记作: $2

  规定:

  空集是任何集合的子集,是任何非空集合的真子集。

  (五) 结论:

  1 $2 2 $2,且 $2,则 $2

  (六) 例题

  (1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。

  (2)化简集合A={x|x-3>2},B={x|x $25},并表示A、B的关系;

  (七) 课堂练习

  (八) 归纳小结,强化思想

  两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;

  (九) 作业布置

  1、书面作业:习题1.1 第5题

  2、提高作业:

  1 已知集合 $2, $2≥ $2,且满足 $2,求实数 $2的取值范围。

  2 设集合 $2,

  $2,试用Venn图表示它们之间的关系。

  板书设计(略)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号