日期:2021-04-28
这是圆综合教案,是优秀的数学教案文章,供老师家长们参考学习。
教学目标
1.使学生认识圆,掌握圆的各部分名称。
2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。
3.初步学会用圆规画圆,培养学生的作图能力。
4.培养学生观察、分析、抽象、概括等思维能力。
教学重难点
教学重点
在动手操作中掌握圆的特征,学会用圆规画圆的方法。
教学难点
理解圆上的概念,归纳圆的特征。
教学工具
课件
教学过程
一、活动一:演示操作,揭示课题
课件出示“大家都来当裁判喽!”
演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。
让学生初步感知圆在生活中的应用。
二、活动二:动手操作,探究新知
(一)教师让学生举例说明周围哪些物体上有圆。
(二)认识圆的各部分名称和圆的特征。
1.学生拿出圆的学具。
2.教师:你们摸一摸圆的边缘,是直的还是弯的?
教师说明:圆是平面上的一种曲线图形。
3.通过具体操作,认识一下圆的各部分名称和圆的特征。
(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。
教师提问:折过若干次后,你发现了什么?
仔细观察一下,这些折痕总在圆的什么地方相交?
教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。板书:半径
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。
(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 d来表示。板书:直径
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍。
(三)反馈练习。
1、P58的“做一做”第1、3、4题
2、练习十四的第2、3题
(四)圆的画法。
1、学生自学,看书57页。
2、学生试画。
3、学生通过试画小结用圆规画圆的方法,注意的问题。
4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。
教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。
5、学生练习
P58的“做一做”第2题
(五)教师提问
为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?
教师板书:半径决定圆的大小,圆心决定圆的位置。
(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?
三、全课小结
这节课我们学习了什么?通过这节课的学习你有什么收获?
四、作业
练习十四的第1题
课后习题
练习十四的第1题。
一、情境导入
请大家欣赏一组美丽的图片(出示课件),在这些人文图片中,你看到了哪个图形(生齐答圆),出示课件。圆是最美的图形,它与我们的生活息息相关,也为我们的生活增添了许多美的寓意。那么关于圆的数学知识,你掌握了多少呢?你说、你说、你来补充,同学们真了不起。关于圆的知识,你们已经掌握了这么多。
这节课,我们就来整理复习一下圆的周长和面积(板书)。
二、整理与复习
1、想一想,圆的周长和面积与圆有什么有关?
(生齐答半径、直径)。对,你能用公式表示出它们之间的关系吗?你说(教师板书)。
[生:周长与半径的关系C=2πr,周长与直径的关系C=πd,半径与面积的关系S=πr2,直径与面积的关系S=π(d/2)2,周长与面积的关系S=π(C/2π)2],你记住这么多公式,老师为你点个赞。现在请大家看着这三个公式,你说d/2表示什么?C/2π表示什么?由此可见,求面积只需知道哪个条件?(生:半径)。所以说S=πr2是个基本公式,要熟记。
2、接下来,咱们小组合作,讨论解决以下三个问题(出示课件)。谁来说一说,圆的周长公式是怎么得来的?
(生:用细绳绕圆一周,这就是圆的周长,经过测量,正好是直径的3倍多一些,这是一个固定的数,叫圆周率,用π表示,因此说圆的'周长是直径的π倍,周长等于直径乘π)。很好!
刚才这名同学用绳测法演示了圆的周长与直径的关系,课堂上我们还用滚动法很直观看出,圆的周长是直径的3倍多一些。咱们再来回放一下,请看(课件演示),由此可见,无论哪种方法,无论大圆还是小圆,得出的结论都是圆的周长是它直径的π倍,也就是C÷d=π,所以求周长只需知道直径就可以了。
现在谁来回答第二个问题,圆的面积公式是怎么推导出来的?你说,(生:边演示边说,把圆等分成若干份,拼成一近似的个长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,长方形的面积等于长乘以宽,圆的面积就等于πr2)
说的真完整,掌声送给他。下面,咱们再把圆面积公式的推导过程完整地回放一遍,仔细观察,认真思考(看课件)。你说,(生:圆形可以转化为方形,圆等分的份数越多,拼成的图形越接近于长方形),接着看,你说,(生:用转化法把圆转化成近似长方形后,长方形的长相当于圆周长的一半,宽相当于圆的半径,长方形的面积等于圆的面积,长方形的面积等于长乘以宽,圆的面积就等于周长的一半乘半径,即πr乘r等于πr2。我还看出长方形的周长比圆的周长增加了两条半径。)你真是一名会学习、会观察的孩子。
刚才这名同学提到了“转化法”,转化法可帮我们把新知识转化为旧知识来解决,它是一种常用的数学思考方法,大家要学会运用。
在圆面积公式推导过程中,你掌握这些知识了吗?请根据思考提纲,同桌再说一遍,然后把第三题画在练习本上。(一名学生到黑板上画)
大家看,这名学生画得很形象,你给大家说说各部分之间的关系吧。(生说),今后遇到和圆面积公式有关的题目,就可以借助这样的草图来分析,不易出错。
3、下面咱们来解决第三个问题(出示课件),你说概念、公式各有什么不同?你说单位有什么不同?联系是?
三、巩固练习
以上,我们对圆的周长和面积进行了复习,你还有什么问题吗?(生:没有)那老师就来检验一下你们掌握的情况。
1、抢答:这都是本单元的基本概念,要熟记。
2、填空:先在练习本上写出算式,你说{生1:(2×3.14+2)×2=16.52(cm)},谁还有不同的想法,你说,{生2:2×2×3.14+2×2=16.52(cm) }这两名同学都是借助草图分析,思路非常正确。这种分析法叫数形结合法,也是数学上常用的思想方法。
3、判断:你说(错的,用假设法,设r=1,扩大后r=3,原C=1×2×π=2π,现C=3×2×π=6π,原S=12×π=π,现S=32×π=9π,可见周长是原来的3倍,面积是原来的9倍。(这位学生用了假设法),这也是一种常用的数学方法。依次讲每题的理由。第四题(生:错,我先画出半圆,描一描,半圆面积是所在圆面积的一半,半圆周长是圆周长的一半还得加上一条半径)。这位同学也用画图法帮助分析。
四、解决问题
数学源于生活又运用于生活,我们学数学的目的就是解决生活中的问题,下面我们就走进生活:
1、请看第一题,你说(算式10×10×3.14)重点理解哪句话,射程就是圆的半径。第二题(1.5×3.14,求一周前进的米数就是求周长)。同学们,在解决问题时,一定要仔细阅读,分析题中的生活语言是公式中的那个条件。
2、这道题要仔细阅读理解,既得选条件,还得选方法。你说,(读完题,发现两问都和分针有关,就选择分针长,分针长就是圆的半径,画图看出,第一问是求圆周长的3/4,所以算式4×2×3.14×3/4。第二问是求面积,1小时分针正好走一圈,所以用4×4×3.14。
今天多数同学已会用画图法来帮助分析、解题,非常好。
3、老大爷请同学们帮帮他的忙,谋划这件事。请大家阅读。
理解题中给了哪些信息?(生:篱笆长12.56m,面积最大)
你怎么理解在房屋后围一块面积最大的鸡栏?
生1:在屋后的空地围一个圆形,圆的面积最大。
生2:可以借助房屋的后墙来围一个图形,这样围的面积肯定大。
现在同学们讨论出两种方案。
1、不靠墙围:围成圆的面积最大
2、靠后墙围。
下面小组合作,计算怎么围面积最大?你说,(生:不靠墙,围成圆的面积最大,篱笆的长相当于围成圆形的周长,因为周长相等时,圆的面积最大。)
(如果靠墙,围成半圆面积最大,这样12.56cm相当于圆周长的一半,用12.56÷3.14=4(m)?? 4×4×3.14÷2=25.12(㎡),围成正方形,12.56÷3,商估大约是5,面积5×5=25(㎡)。还小于半圆的面积。)
同学们,真聪明,今后在解决问题时,一定要仔细阅读认真审题,才能考虑周全,提高正确率。
五、全课小结
紧张的一节课要结束了,谈谈你的收获吧?
你说,我对圆面积公式的推导过程更熟悉了。我学会了用假设法、画图法、转化法解决问题。大家这么多的收获,老师祝贺你们!
下课!
教学目标
1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。
2、进一步理解轴对称图形的特征,体会圆的特征。
3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。
教学重难点
教学重、难点: 1、圆的特征。 2、准确画圆 3、同一个圆里半径与直径的关系。
教学过程
一、师生谈话,导入新课
课件出示图:
师提问:同学们看,这是什么图形?在我们的生活周围,你还知道哪些物体的形状是圆形的?
学生举例说。
(硬币、茶杯盖的形状、玻璃器皿的外形等等)
课件出示图,这些都是由什么图形构成的?
师:现在我们来做一个游戏:老师这里有一个布口袋,里面有很多的东西。我请大家来摸一个圆形?看谁能一下子摸出来。
指名学生上台操作。
提问:你是怎么判断出来的?学生回答后,
教师提问: 那么,什么叫圆呢?它与我们以前学过的平面图形有什么不同?
学生回答后,
教师进行小结:圆是平面上的一种曲线图形。
二、动手操作,研究特征
师:刚才大家已经认识了圆,那么,想不想把它画出来看一看呢?请你在白纸上画一个圆。
学生自由画,稍后,教师讲评学生的作业:说说你是怎么画的?用了什么方法?
比较一下,谁的方法画的圆比较好?大家一致同意用圆规的方法比较精确。教师讲解画圆的方法。
现在就请每个同学用圆规在第二张白纸上画一个圆。学生开始操作,
几分钟后,学生全部完成了作业。老师让大家四人一组,把四个人的圆放在一块,相互欣赏一分钟,可以说一句表扬的话。
师:欣赏完了刚才四个同学画的圆以后,你发现四个人的作品有什么不一样啊?
学生说:我发现了四个圆的大小不一样,画在纸上的位置也不一样。
老师提问:那么,你们知道为什么圆的位置会不一样?
生说:我们把圆规的针尖放在纸的位置不一样。
师:对呀。你知道这个点叫什么吗?它就是圆心。找出自己画的圆的圆心。并写上字母O。
师:现在大家都明白了,是谁决定了圆的位置?
那么,又是谁决定了圆的大小呢?
学生讨论后,得出了圆规两只脚拉开的大小就决定了圆的大小。
师:如果要用一条线段表示圆规两只脚间的距离,小组讨论一下,该这样表示。
教师在黑板上画的圆上任意画一条线段,让学生判断是否正确。提问:从圆心到圆上任意一点的线段叫什么?
再画几条线段,这是半径吗?
那么,现在你们明白了是什么决定了圆的大小。
教师进行小结:在同一个圆内,半径有无数条,所有的半径都相等。
6、用圆规画一个半径是2厘米1.5cm的圆。同桌评价一下是否正确。
7、玩一玩:刚才老师给大家发了一个圆形的纸片:老师忘了画圆心,你能帮助老师给找出来吗?
生:我把纸条对折,发现了有一条折痕,所有的折痕集中在一点,这一点就是圆心。师:你们同意吗?折痕叫什么名称呢?
师:请大家看书找出这个折痕叫什么?在此基础上,引出直径的概念。
师:在自己画的圆中,画出几条直径,看看直径有什么特点。它与半径有关系吗?
学生自由操作,同桌学习交流:得出了在同一个圆内,直径有无数条,所有的直径都相等,而且直径是半径的两倍(半径是直径的一半)。
用字母怎么表示呢?学生继续看书。
三、巩固应用
1、口答(填一填,我能行! )
2、判断对错,并说明理由。
①在同一个圆中,从圆心到圆上任意一点的距离都相等。
( )
两端都在圆上的线段叫做直径。 ( )
③画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。
( )
④直径3厘米的圆比半径2厘米的圆大。 ( )
⑤直径是半径的2倍。 ( )
3、操作:你能量出一元硬币的直径是多少吗?四人小组共同进行,看看你们能想出几种方法?
布置作业:
实践:
1. 体育节要到了,铅球裁判员王老师犯愁了:铅球比赛场地上的圆圈还没画呢,圆圈的直径是2.35米,可没有这么大的圆规怎么办呢?同学们,你们能帮帮他吗?课后请四人小组讨论好方法并到操场上去实际做一做。
2.大象想在一个边长20厘米的正方形铁皮上剪出一个最大的圆用作铁皮水桶的底,你们能既迅速又准确做到吗?课后试一试。
四、课堂总结
通过这节课,你学会了什么?你有什么收获?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号